$$
\begin{aligned}
& \delta_{1} \omega=\omega^{\rho_{1}+1} \text {, and } \delta_{1} j=\omega^{\rho_{1}} v_{1} j+\omega^{\rho v_{2}}+\cdots+\omega^{\rho_{z}} v_{z}<\omega^{\rho_{1}}\left(v_{1} j+1\right) \text {; } \\
& \sigma\left(\delta_{1} \mu, \delta_{1} j\right)<\sigma\left(\delta_{1} \mu, \omega^{\rho_{1}}\left(v_{1} j+1\right)\right)<\delta_{1} \mu+\omega^{\rho_{1}+1}=\delta_{1} \mu+\delta_{1} \omega .
\end{aligned}
$$

By (2), $\pi\left(\delta^{\mu}, \delta^{j}\right)<\omega^{\delta_{1 \mu}+\delta_{1} \omega}=\left(\omega^{\left.\delta_{1}\right)^{(\mu+\omega)}} \leqq \delta^{\mu+\omega} \leqq \delta^{\delta}\right.$.
Hence by (1), the order type of S is less than $\pi\left(\omega^{\delta}, \delta^{\delta}\right)$. This is a contradiction since S was the segment of M^{δ} of order type $\pi\left(\omega^{\delta}, \delta^{\delta}\right)$.

University of Illinois

A CHARACTERIZATION OF ABSOLUTE NEIGHBORHOOD RETRACTS

RALPH H. FOX

By an absolute neighborhood retract (ANR) I mean a separable metrizable space which is a neighborhood retract of every separable metrizable space which contains it and in which it is closed. This generalization of Borsuk's original definition ${ }^{1}$ was given by Kuratowski 2 for the purpose of enlarging the class of absolute neighborhood retracts to include certain spaces which are not compact. The space originally designated by Borsuk as absolute neighborhood retracts (or \Re-sets) will now be referred to as compact absolute neighborhood retracts. Many of the properties of compact ANR-sets hold equally for the more general ANR-sets. ${ }^{3}$

The Hilbert parallelotope Q, that is, the product of the closed unit interval $[0,1]$ with itself a countable number of times is a "universal" compact ANR in the sense that ${ }^{4}$ every compact ANR is homeomorphic to a neighborhood retract of Q. The classical theory of Borsuk makes good use of the imbedding of compact ANR-sets in Q. The problem solved here is that of finding a "universal" ANR.

Received by the editors June 28, 1941.
${ }^{1}$ Fundamenta Mathematicae, vol. 19 (1932), pp. 220-242.
${ }^{2}$ Fundamenta Mathematicae, vol. 24 (1935), p. 270, Footnote 1.
${ }^{3}$ Ibid., pp. 272, 276, and 277, and Footnote 1, p. 279 and Footnote 3. Note that Theorem 12, Fundamenta Mathematicae, vol. 19 (1932), p. 229, is not true for general ANR-sets. In fact let $A=\sum S_{n}$ where S_{n} is the plane circle of radius 2^{-n} and center $\left(3 \cdot 2^{-n}, 0\right)$; let $f(x, y)=(x,|y|)$ for $(x, y) \in A$ and let

$$
f_{n}(x, y)=\left\{\begin{array}{l}
(x,|y|), \text { for }(x, y) \in A-S_{n}, \\
(x, y), \quad \text { for }(x, y) \in S_{n}
\end{array}\right.
$$

Then $f_{n} \rightarrow f$ in $A^{A} ; f$ can be extended to the half-plane $\{x>0\}$, but none of the maps f_{n} can. A is an ANR-set. Theorem 16, Fundamenta Mathematicae, vol. 19 (1932), p. 230, is also false for general ANR-sets.
${ }^{4}$ Fundamenta Mathematicae, vol. 19 (1932), p. 223.

