CORRECTION TO "TOTALLY GEODESIC EINSTEIN SPACES"¹

AARON FIALKOW

The coordinate system (p. 427) in which $H = x^n$ for some fixed value of y and $f_{n\lambda} = 0$ exists if and only if $f^{ij}H_{,i}H_{,j} \neq 0$ for this value of y. Hence Theorem 3.1 is valid only if this inequality holds. The remaining case, namely,

$$(3.15) f^{ij}H_{,i}H_{,j} = 0$$

for every y can arise only if c=0, as may be seen by differentiating (3.15) covariantly with respect to k and using (3.7). We note that, in accordance with (3.8) and (3.9), c=0 implies that a=b=0. To obtain the analogue of Theorem 3.1 for the case in which (3.15) holds, we proceed in a manner analogous to that in H. W. Brinkmann, loc. cit., pp. 131–135 or A. Fialkow, *Conformal geodesics*, Transactions of this Society, vol. 45 (1939), p. 473. By these methods, we find a coordinate system such that $H=x^n$ for a fixed value of y and

$$f^{ns} = 0,$$
 $f^{nn} = 0,$ $f^{(n-1)n} = 1,$
 $f_{t(n-1)} = 0,$ $f_{(n-1)(n-1)} = 0,$ $f_{(n-1)n} = 1,$

where $s, t=1, 2, \dots, n-2$. In this coordinate system, the characteristic condition (3.7) becomes $\partial g_{ij}/\partial x^{n-1}=0$. (In the Transactions paper, this last equation appears incorrectly as $\partial g_{st}/\partial x^{n-1}=0$.)

If the f_{ij} are to be the components of the metric tensor of an Einstein space E_n , then, as was shown by Brinkmann, the first fundamental form of E_n may be written as

(3.16)
$$\begin{aligned} f_{st} &= h_{st}(x^s, x^n), \quad f_{sn} = 0, \quad f_{nn} = 0, \\ f_{(n-1)n} &= 1, \quad f_{s(n-1)} = 0, \quad f_{(n-1)(n-1)} = 0, \end{aligned}$$

where $h_{st}dx^s dx^t$ with x^n constant is the first fundamental form of an Einstein space E_{n-2} of zero mean curvature, and the components of the tensor h_{st} satisfy certain partial differential equations. According to Brinkmann, the conditions (3.16) are the necessary and sufficient conditions that E_n be conformal to another Einstein space by means of a transformation $d\bar{s} = \sigma ds$ with $\Delta_1 \sigma = f^{ij} \sigma_{,i} \sigma_{,j} = 0$. We note that the most general solution for H of the form $H = H(x^n, y)$ is given by (3.13). Now this solution $H(x^n, y)$ must involve x^n by the hypothesis

Received by the editors April 4, 1941.

¹ This Bulletin, vol. 45 (1939), pp. 423-428.