CORRECTION TO "TOTALLY GEODESIC EINSTEIN SPACES" ${ }^{1}$

AARON FIALKOW

The coordinate system (p. 427) in which $H=x^{n}$ for some fixed value of y and $f_{n \lambda}=0$ exists if and only if $f^{i j} H_{, i} H_{, j} \neq 0$ for this value of y. Hence Theorem 3.1 is valid only if this inequality holds. The remaining case, namely,

$$
\begin{equation*}
f^{i j} H_{, i} H_{, j}=0 \tag{3.15}
\end{equation*}
$$

for every y can arise only if $c=0$, as may be seen by differentiating (3.15) covariantly with respect to k and using (3.7). We note that, in accordance with (3.8) and (3.9), $c=0$ implies that $a=b=0$. To obtain the analogue of Theorem 3.1 for the case in which (3.15) holds, we proceed in a manner analogous to that in H. W. Brinkmann, loc. cit., pp. 131-135 or A. Fialkow, Conformal geodesics, Transactions of this Society, vol. 45 (1939), p. 473 . By these methods, we find a coordinate system such that $H=x^{n}$ for a fixed value of y and

$$
\begin{aligned}
f^{n s} & =0, & f^{n n} & =0,
\end{aligned} r \begin{array}{ll}
f^{(n-1) n}=1, \\
f_{t(n-1)} & =0,
\end{array} \quad f_{(n-1)(n-1)}=0, \quad \begin{array}{ll}
f_{(n-1) n}=1,
\end{array}
$$

where $s, t=1,2, \cdots, n-2$. In this coordinate system, the characteristic condition (3.7) becomes $\partial g_{i j} / \partial x^{n-1}=0$. (In the Transactions paper, this last equation appears incorrectly as $\partial g_{s t} / \partial x^{n-1}=0$.)

If the $f_{i j}$ are to be the components of the metric tensor of an Einstein space E_{n}, then, as was shown by Brinkmann, the first fundamental form of E_{n} may be written as

$$
\begin{align*}
f_{s t} & =h_{s t}\left(x^{s}, \quad x^{n}\right), \quad f_{s n}=0, \quad f_{n n}=0, \\
f_{(n-1) n} & =1, \quad f_{s(n-1)}=0, \quad f_{(n-1)(n-1)}=0, \tag{3.16}
\end{align*}
$$

where $h_{s t} d x^{s} d x^{t}$ with x^{n} constant is the first fundamental form of an Einstein space E_{n-2} of zero mean curvature, and the components of the tensor $h_{s t}$ satisfy certain partial differential equations. According to Brinkmann, the conditions (3.16) are the necessary and sufficient conditions that E_{n} be conformal to another Einstein space by means of a transformation $d \bar{s}=\sigma d s$ with $\Delta_{1} \sigma=f^{i j} \sigma_{, i} \sigma_{, j}=0$. We note that the most general solution for H of the form $H=H\left(x^{n}, y\right)$ is given by (3.13). Now this solution $H\left(x^{n}, y\right)$ must involve x^{n} by the hypothesis

Received by the editors April 4, 1941.
${ }^{1}$ This Bulletin, vol. 45 (1939), pp. 423-428.

