EXPANSIONS IN SERIES OF NON-ORTHOGONAL
FUNCTIONS

R. V. CHURCHILL

1. Introduction. Let ¢;(x) (=1, 2, - - - ) be the normalized charac-
teristic functions of the Sturm-Liouville problem

da
A0p'(0) + Bogp(0) = 0,  A:¢'(1) + Big(1) = 0,
in which the functions P, Q, and R are continuous, and R >0, P >0,

when 0=x =1. The set of functions {gbi(x)} is closed with respect to
the class L%(0, 1), in the sense that Parseval’s relation,

fo le2dx = 2':‘,[ fo 1Pf¢,~dx:r,

is satisfied by every function f of that class. This fact can be deduced
readily from a theorem by Kellogg! on the completeness of the set of
solutions of the self-adjoint problem of the second order. It can also
be obtained from a result found by Dixon.?

In terms of two functions f and G of the class L2?(0, 1), Parseval’s
relation can be written
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where ¢; are the Fourier constants of f. If G=g/P when 0<x <t and

G =0 when t<x <1, where the function g belongs to L%(0, 1), it follows
that
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