A CHARACTERIZATION OF THE RADICAL OF AN ALGEBRA

SAM PERLIS

1. The first main result. We shall prove the following result.

Theorem 1. Let F be any field and A an algebra over F with a unity element. Then the radical of A consists of all elements h such that $g+h$ is regular for every regular g.

Let H be the set of all elements h defined in the theorem. It is easy to see that H is a linear set over F. We shall prove now that if A is simple, $H=0$.

Let g and g_{1} be any regular elements of A and h be in H. Then $g_{1}^{-1} g+h$ is regular so that $g+g_{1} h$ is regular. Hence $g_{1} h$ is in H and similarly $h g_{1}$ is in H. An arbitrary element a of A has ${ }^{1}$ the form $a=\sum_{i=1}^{n} g_{i}$ with regular elements g_{i} so that $a h=\sum g_{i} h$ is a sum of elements $g_{i} h$ of H. Thus $a h$, and similarly $h a$, is in H so that H is an ideal of A. If $H \neq 0$ then $H=A$ since A is simple. But A contains the regular element -1 , and $(-1)+1$ is not regular so that 1 cannot be in H, whence $H \neq A$. Hence $H=0$.

Next we shall prove that $H=0$ whenever A is semi-simple. Now $A=A_{1}+A_{2}+\cdots+A_{i}$ where the A_{i} arre simple, and each x of A has a unique expression $x=a_{1}+a_{2}+\cdots+a_{t}$ with a_{i} in A_{i}. Further, x is regular if and only if each a_{i} is a regular element of A_{i}. Let $g=g_{1}+\cdots+g_{t}$ be regular, $h=h_{1}+\cdots+h_{t}$ be in H, so that $g+h=\left(g_{1}+h_{1}\right)+\cdots+\left(g_{t}+h_{t}\right)$. Then $g+h$ is regular for every regular g if and only if $g_{i}+h_{i}$ is regular in A_{i} for every regular g_{i} of A_{i}. By the proof above for simple algebras every $h_{i}=0$ so that $h=0$ and $H=0$.

In considering the case of a general algebra A, we show first that the radical R is contained in H. Let g be regular and r lie in R. Then $g+r$ is regular if and only if $1+g^{-1} r$ is regular. Now $g^{-1} r$ is in R, $\left(g^{-1} r\right)^{t}=0$ for some integer $t,\left(g^{-1} r\right)^{2 t+1}+1=1$. If λ is an indeterminate, $\lambda+1$ is a factor of $\lambda^{2 t+1}+1$ so that $g^{-1} r+1$ is a factor of $\left(g^{-1} r\right)^{2 t+1}+1=1$; hence, $g^{-1} r+1$ is regular, $g+r$ is regular, r is in H, and R is contained in H.

It remains to prove that R contains H. Since $A-R$ is semi-simple, the set H_{0} defined for $A-R$, similarly to H for A, is the zero set. If g is regular in A and h is in H, the class $[g+h]$ in $A-R$ is a regular ele-

[^0]
[^0]: Presented to the Society, April 12, 1941; received by the editors April 11, 1941.
 ${ }^{1}$ K. Shoda, Mathematische Annalen, vol. 107 (1933), pp. 252-258.

