A CHARACTERIZATION OF THE RADICAL OF AN ALGEBRA

SAM PERLIS

1. The first main result. We shall prove the following result.

THEOREM 1. Let F be any field and A an algebra over F with a unity element. Then the radical of A consists of all elements h such that g+h is regular for every regular g.

Let H be the set of all elements h defined in the theorem. It is easy to see that H is a linear set over F. We shall prove now that if A is simple, H=0.

Let g and g_1 be any regular elements of A and h be in H. Then $g_1^{-1}g + h$ is regular so that $g + g_1h$ is regular. Hence g_1h is in H and similarly hg_1 is in H. An arbitrary element a of A has¹ the form $a = \sum_{i=1}^{n} g_i$ with regular elements g_i so that $ah = \sum g_ih$ is a sum of elements g_ih of H. Thus ah, and similarly ha, is in H so that H is an ideal of A. If $H \neq 0$ then H = A since A is simple. But A contains the regular element -1, and (-1)+1 is not regular so that 1 cannot be in H, whence $H \neq A$. Hence H = 0.

Next we shall prove that H=0 whenever A is semi-simple. Now $A = A_1 + A_2 + \cdots + A_i$ where the A_i are simple, and each x of A has a unique expression $x = a_1 + a_2 + \cdots + a_i$ with a_i in A_i . Further, x is regular if and only if each a_i is a regular element of A_i . Let $g = g_1 + \cdots + g_i$ be regular, $h = h_1 + \cdots + h_i$ be in H, so that $g+h = (g_1+h_1) + \cdots + (g_i+h_i)$. Then g+h is regular for every regular g_i of A_i . By the proof above for simple algebras every $h_i = 0$ so that h = 0 and H = 0.

In considering the case of a general algebra A, we show first that the radical R is contained in H. Let g be regular and r lie in R. Then g+r is regular if and only if $1+g^{-1}r$ is regular. Now $g^{-1}r$ is in R, $(g^{-1}r)^t=0$ for some integer t, $(g^{-1}r)^{2t+1}+1=1$. If λ is an indeterminate, $\lambda+1$ is a factor of $\lambda^{2t+1}+1$ so that $g^{-1}r+1$ is a factor of $(g^{-1}r)^{2t+1}+1=1$; hence, $g^{-1}r+1$ is regular, g+r is regular, r is in H, and R is contained in H.

It remains to prove that R contains H. Since A - R is semi-simple, the set H_0 defined for A - R, similarly to H for A, is the zero set. If gis regular in A and h is in H, the class [g+h] in A - R is a regular ele-

Presented to the Society, April 12, 1941; received by the editors April 11, 1941.

¹ K. Shoda, Mathematische Annalen, vol. 107 (1933), pp. 252–258.