Now, if m is odd, then $\left(m+1-2^{N-3}\right) / 2$ is an integer which may be taken as the value of b since it satisfies the conditions (7). It is easily seen that the set (6), in which $b=\left(m+1-2^{N-3}\right) / 2$ and c is determined by (8), is not the set (4). However, if m is even and not equal to 2^{N-3}, then $b=\left(m+2-2^{N-3}\right) / 2$ and c determined by (8) are integers which satisfy (7) and yield a set (6) which is not the set (4). But if $m=2^{N-3}$, then $N \geqq 6$ and $b=2$ satisfies the conditions (7) on b and yields a set (6) which is not the set (4).

An interesting choice of integers b and c is that given by $b=\left(m+1-2^{N-4}\right) / 2$ if m is odd and less than or equal to $\left(2^{N-4}+2^{N-3}-1\right)$, but by $b=\left(m-2^{N-4}\right) / 2$ if m is even and less than or equal to $\left(2^{N-4}+2^{N-3}\right)$. Then (6) require no rearrangement, and c is respectively b or $b+1$. The resulting integers (6) differ from (4) when $m \neq 2^{N-4}+2^{N-3}-1,2^{N-4}+2^{N-3}$.

Northwestern University

HAUSDORFF METHODS OF SUMMATION WHICH INCLUDE ALL OF THE CESARO METHODS

H. L. GARABEDIAN

1. Introduction. The transformation ${ }^{1}$

$$
\sigma_{m}=\sum_{n=0}^{m} C_{m, n} \Delta^{m-n} C_{n} \cdot s_{n},
$$

where $c_{n}=\int_{0}^{1} u^{n} d \phi(u)$ and $\left\{s_{n}\right\}$ is a given sequence, defines a regular method of summation of the sequence $\left\{s_{n}\right\}$ provided that $\phi(u)$ is of bounded variation on the interval $0 \leqq u \leqq 1$, continuous at $u=0$, and

$$
\phi(u)=\left\{\begin{array}{l}
0 \text { if } u=0 \\
1 \text { if } u=1 \\
\frac{1}{2}[\phi(u-0)+\phi(u+0)] \text { if } 0 \leqq u<1
\end{array}\right.
$$

If these conditions of regularity are fulfilled the sequence $\left\{c_{n}\right\}$ is said to be a regular moment sequence (briefly a regular sequence), the mass function $\phi(u)$ is said to be a regular mass function, and the method of summation involved is called a Hausdorff method of summation ([1] or [2]) and is designated by the symbol [$H, \phi(u)$].

[^0]
[^0]: Presented to the Society, February 22, 1941; received by the editors April 8, 1941.
 ${ }^{1}$ To define the symbolism used here we write $C_{m, n}=m(m-1) \cdots(m-n+1) / n!$, $C_{m, 0}=1 ; \Delta^{i} x_{j}=x_{j}-C_{i, 1} x_{j+1}+C_{i, 2} x_{j+2}+\cdots$.

