SOME THEOREMS ON SUBSERIES

J. D. HILL ${ }^{1}$

1. Absolutely convergent series. A simple calculation reveals that the arithmetic mean value of all subsums (including the void sum) of a given finite sum $s_{n}=u_{1}+u_{2}+\cdots+u_{n}$ is equal to $s_{n} / 2$. In this section we shall show (see Theorem 1 below) that an integral mean value can be found, consistent with the preceding, for the sums of all infinite subseries of a given absolutely convergent series $\sum u_{k}=s$. We begin by defining a one-to-one correspondence between the set of all infinite subseries of a given absolutely convergent real series $\sum u_{k}=s$, and the set of all points on the interval $I \equiv(0<\xi \leqq 1)$. If ξ is any point of I then ξ admits a unique nonterminating binary representation of the form

$$
\begin{equation*}
\xi=0 . \alpha_{1} \alpha_{2} \alpha_{3} \cdots \alpha_{k} \cdots \tag{1.1}
\end{equation*}
$$

where
(1.2) $\quad \alpha_{k_{i}}=1 \quad\left(1 \leqq k_{i}<k_{i+1} ; i=1,2,3, \cdots\right) ; \quad \alpha_{k}=0 \quad$ otherwise.

To the point ξ shall correspond the infinite subseries $\sum_{i} u_{k_{i}}$. Conversely, if $\sum_{i} u_{k_{i}}\left(1 \leqq k_{i}<k_{i+1}\right)$ is a given infinite subseries of $\sum u_{k}$, we shall place it in correspondence with the point ξ of I defined by (1.1) and (1.2).

We now define a function $\phi(\xi)$ by setting $\phi(0) \equiv 0$ and

$$
\begin{equation*}
\phi(\xi) \equiv \sum_{k=1}^{\infty} \alpha_{k} u_{k}, \quad 0<\xi \leqq 1 \tag{1.3}
\end{equation*}
$$

where $0 . \alpha_{1} \alpha_{2} \alpha_{3} \cdots \alpha_{k} \cdots$ is the nonterminating binary representation of ξ. In view of the above correspondence the set of all functional values $\phi(\xi)$ for ξ on I is evidently identical with the set of the sums of all infinite subseries of $\sum u_{k}$. This fact leads us to investigate the integrability of the function $\phi(\xi)$ and we find that the following lemma holds.

Lemma 1. The integral

$$
\begin{equation*}
\int_{0}^{1} \phi(\xi) d \xi \tag{1.4}
\end{equation*}
$$

exists in the sense of Riemann, and has the value $s / 2$.
Received by the editors February 25, 1941.
${ }^{1}$ The author is indebted to the referee for valuable comments.

