Geometry

75. L. M. Blumenthal: Metric characterization of n-dimensional

 elliptic space $\mathcal{E}_{n r}$. Preliminary report.The objective is the characterization of the elliptic metric by means of relations between mutual distances of points in certain finite subsets of the space. If δ-supplementation denotes the process by which a semi-metric Σ^{*} arises from a semi-metric $\boldsymbol{\Sigma}$ of diameter d upon replacing arbitrary distances $p q$ in Σ by $\delta-p q, \delta \geqq d$, and identifying points with zero distance in Σ^{*}, then $\varepsilon_{n r}=\sup _{\pi r} S_{n r}$, where $S_{n r}$ is the metrically convex spherical surface of radius r and dimension n. It is proved that semi-metric $\boldsymbol{\Sigma}$ is congruently contained in $\varepsilon_{n r}$ if and only if $p, q \in \Sigma$ implies $p q \leqq \pi r / 2$ and there exists a sup $\operatorname{sir}^{\Sigma}$ congruently contained in $S_{n r}$. A semi-metric m-tuple $p_{1}, p_{2}, \cdots, p_{m}$ with $p_{i} p_{j} \leqq \pi r / 2$ is congruently contained in $\mathcal{E}_{n r}$ if and only if a symmetric square matrix $\left(\epsilon_{i j}\right), \epsilon_{i i}=1, \epsilon_{i j}=1(i, j=1,2, \cdots, m)$, exists such that the determinant $\left|\epsilon_{i j} \cos \left(p_{i} p_{j} / r\right)\right|$ has rank not exceeding $n+1$ with all nonvanishing principal minors positive. This puts in algebraic form the determination of congruence indices for the $\varepsilon_{n r}$, at least with respect to finite semi-metric sets. (Received October 24, 1941.)

76. Nathaniel Coburn: Unitary curves in unitary space.

The question of the existence of an arc length parameter for a unitary curve K_{1} imbedded in an n-dimensional unitary space K_{n} is discussed. First, the familiar formula for arc length element $\left(d s^{2}\right)$ is generalized. Then, it is shown that if and only if K_{1} possesses a natural parameter, does an arc length parameter which is an analytic function of the curve parameter exist. In fact, ∞^{1} such parameters exist; all have the same absolute value but different moduli. If the curve parameter is real (K_{1} reduces to X_{1}), then again ∞^{1} such arc length parameters exist. One and only one of these parameters is real and positive; this parameter is the one commonly associated with X_{1} in K_{n}. The remainder of the paper is concerned with determining those K_{n} into which can be imbedded various classes of K_{1} which possess an arc length parameter (such K_{1} are denoted by U_{1}). The principal result is: If the metric tensor of K_{n} is not of rank one, then those unitary K_{1} which satisfy a system of differential equations of the third or higher order in the parameter are not U_{1}. (Received October 24, 1941.)

77. N. A. Court: On the theory of the tetrahedron.

A "quasi-polar" sphere (Q) may be associated with the general tetrahedron (T) having for center the Monge point M of (T) and for the square of its radius one third of the power of M for the circumsphere (O) of (T). The following two propositions may serve as samples of the many properties of (Q) : The "quasi-polar" sphere is coaxial with the circumsphere (O) and the twelve point sphere (L) of (T); The polar reciprocal tetrahedron of (T) with respect to the sphere (Q) is circumscribed about the medial tetrahedron of (T). A second sphere (G) may be related to (T) having for center the centroid G of (T) and for the square of its radius one forty-eighth of the sum of the squares of (T). The sphere (G) is orthogonal to (Q) and is coaxial with $(Q),(O)$, and (L). The four spheres having for centers the vertices of (T) and orthogonal to (Q) cut the spheres having for diameters the respective medians of (T) along four circles lying on the same sphere, namely the sphere (G) of (T). In the special case when the tetrahedron becomes orthocentric, the spheres (Q) and (G) become, respectively, the polar sphere and the first twelve point sphere of the orthocentric tetrahedron. (Received November 21, 1941.)

