ABSTRACTS OF PAPERS

25. L. R. Wilcox: Extensions of semi-modular lattices. III.

The author's result (abstract 47-5-208) is extended to all complemented semimodular lattices of dimension equal to or greater than 4. The following theorem is proved. Let L be left complemented (abstract 47-9-356) with the further property that $b, c \in L, bc \neq 0$ implies (a+b)c=a+bc for $a \leq c$; suppose also that there exists in La chain of length 6. Then there exists a complemented modular lattice Λ containing Lorder-isomorphically and having the properties (a) $a \in L, a \neq 0, b \geq a$ implies $b \in L$, and (b) for $a \in \Lambda, b \in L, a \leq b$ there exists $c \in L$ such that c is a complement (in Λ) of a in b. Properties (a), (b) characterize Λ uniquely up to isomorphisms. This theorem is a lattice-theoretic generalization of well known imbeddings of affine and hyperbolic spaces into projective spaces. (Received November 24, 1941.)

26. Leonard Carlitz: q-Bernoulli numbers and polynomials.

Rational functions of q are defined by means of $q(qb+1)^m = b^m (m > 1)$, where after expansion b^m is replaced by b_m ; "polynomials" are defined by $b_m(x) = \sum_{\alpha=0}^m C_{m,\alpha} q^{\alpha x} [x]^{m-\alpha} b_{\alpha}$, where $[x] = (q^x - 1)/(q - 1)$. Many of the properties of the ordinary Bernoulli numbers and polynomials are readily extended to these quantities; in addition there are certain formulas in the generalized case that are not easily specialized to the case q=1. Among possible explicit formulas for b_m may be mentioned $b_m = \sum_{s=0}^m 1/[s+1]\sum_{\alpha=0}^{\bullet} (-1)^{\alpha} [\frac{s}{\alpha}] q^{\alpha(\alpha+1-2s)/2}$. $[\alpha]^m$, which leads at once to a generalized Staudt-Clausen theorem: $b_m = \sum_{s=0}^{m+1} N_s(q)/F_s(q) \ (m > 0)$, where $F_s(q)$ is the cyclotomic polynomial and deg $N_s < \deg F_s$. (Received November 24, 1941.)

27. Joseph Lehner: The Ramanujan identities and congruences for powers of eleven. Preliminary report.

The author proves the existence of a "Ramanujan identity" for the modulus 11^{α} $(\alpha \ge 1)$. For $\alpha = 1, 2$, this identity implies the Ramanujan conjecture: $p(n) \equiv 0 \pmod{11^{\alpha}}$ if $24n \equiv 1 \pmod{11^{\alpha}}$. The methods used are those of Rademacher's paper *The Ramanujan identities under modular substitution* (to be published in the American Journal of Mathematics). A modification of Hecke's *T*-operator is used. This operator is defined as follows: $U_{11}F(\tau) = \sum_{\lambda} F(\tau + \lambda/11), \lambda \mod 11$. If $F(\tau)$ is a modular function belonging to $\Gamma_0(121)$, that subgroup of the modular group defined by $c \equiv 0 \pmod{121}$, then $U_{11}F$ belongs to $\Gamma_0(11)$. Then it can be expressed as a polynomial in $A(\tau), B(\tau)$, certain well known functions which constitute a basis for $\Gamma_0(11)$. By taking *F* to be $\eta(121\tau)/\eta(\tau)$, where $\eta(\tau)$ is the well known elliptic modular function of Dedekind, we obtain the desired Ramanujan identity for the modulus 11. Identities for higher powers of 11 are then obtained by a two-fold induction, one for even α , the other for odd α . The possibility of proving Ramanujan's conjecture for higher values of α ($\alpha > 2$) is being investigated. (Received November 19, 1941.)

Analysis

28. C. B. Barker: The Lagrange multiplier rule for two dependent and two independent variables.

Let $\bar{s}_1(x, y)$ and $\bar{s}_2(x, y)$ be of class C''' on a closed simply connected region \overline{G} of class C_{α}''' and minimize (1) $\iint_{G} f(x, y, z_1, z_2, p_1, p_2, q_1, q_2) dx dy$ among all pairs of functions $z_1(x, y)$ and $z_2(x, y)$ which coincide on the boundary G^* with $\bar{s}_1(x, y)$ and $\bar{z}_2(x, y)$, respectively, and which satisfy (2) $\phi(x, y, z_1, z_2, p_1, p_2, q_1, q_2) = 0$ on G; assume that f

1942]