PROJECTION OF THE SPACE (m) ON ITS SUBSPACE (c_{0})

ANDREW SOBCZYK

In a paper in the Duke Journal, A. E. Taylor ${ }^{1}$ remarks that it is an open question whether or not there exists a projection of the space (m), of bounded sequences, on its subspace (c_{0}), the space of sequences convergent to 0 . In this note we make a few remarks which supplement those of Taylor on this question, and we point out that a negative answer follows from a recent result of R. S. Phillips, ${ }^{2}$ so that the question is now settled.

Taylor shows that if a projection of the space (c), of convergent sequences, on the space (c_{0}) exists, it must be of norm greater than or equal to 2 . This implies the same result for (m) on (c_{0}), since any projection of (m) on (c_{0}) would be in particular a projection of (c) on $\left(c_{0}\right)$.

The space (c) is essentially of dimension only one greater than that of its subspace $\left(c_{0}\right)$. This follows since (c) is obviously the set of all elements of the form $x=x^{(0)}+t X_{1}$, where $X_{1}=(1,1, \cdots), x^{(0)} \in\left(c_{0}\right)$, and t is a number. If $x=\left\{x_{i}\right\}$ is any element of (c), the linear functional $a(x)=t=\lim _{n \rightarrow \infty} x_{n}$ is of norm 1, and vanishes on the subspace $\left(c_{0}\right)$. Now it is a remark of Bohnenblust ${ }^{3}$ that for any subspace of a normed linear space L defined by the vanishing of a fixed linear functional on L, there exist projections of norm less than or equal to $2+\epsilon$, for arbitrary $\epsilon>0$. Consequently there are projections of (c) on (c_{0}) of norm less than or equal to $2+\epsilon$.

There are projections of (c) on (c_{0}) which are of norm exactly 2 , as may be seen as follows. If $x=\left(x^{(0)}+t X_{1}\right) \in(c)$, the general form of a projection of (c) on (c_{0}) is

$$
P x=x+t\left\{b_{i}\right\}=x^{(0)}+t\left(X_{1}+\left\{b_{i}\right\}\right)
$$

where $\left\{b_{i}\right\}$ is any sequence of constants such that $\lim _{i \rightarrow \infty} b_{i}=-1 .{ }^{4}$ To calculate the norm of P, we have $\|P x\| \leqq\|x\|+|t| \cdot \sup _{i}\left|b_{i}\right|$, and $\|x\|=\left\|x^{(0)}+t X_{1}\right\|=\sup _{i}\left|x_{i}^{(0)}+t\right| \geqq|t|$ since $x_{i}^{(0)} \rightarrow 0$. Therefore $|P| \leqq 1+\sup _{i}\left|b_{i}\right|$, and because of Taylor's result this has the value
${ }^{1}$ The extension of linear functionals, Duke Mathematical Journal, vol. 5 (1939), pp. 538-547; p. 547.
${ }^{2}$ On linear transformations, Transactions of this Society, vol. 48 (1940), pp. 516541; pp. 539-540.
${ }^{3}$ Convex regions and projections in Minkowski spaces, Annals of Mathematics, (2), vol. 39 (1938), pp. 301-308; p. 308.
${ }^{4}$ See Taylor, op. cit.

