PROJECTION OF THE SPACE (m) ON ITS SUBSPACE (c_0)

ANDREW SOBCZYK

In a paper in the Duke Journal, A. E. Taylor¹ remarks that it is an open question whether or not there exists a projection of the space (m), of bounded sequences, on its subspace (c_0) , the space of sequences convergent to 0. In this note we make a few remarks which supplement those of Taylor on this question, and we point out that a negative answer follows from a recent result of R. S. Phillips,² so that the question is now settled.

Taylor shows that if a projection of the space (c), of convergent sequences, on the space (c_0) exists, it must be of norm greater than or equal to 2. This implies the same result for (m) on (c_0) , since any projection of (m) on (c_0) would be in particular a projection of (c) on (c_0) .

The space (c) is essentially of dimension only one greater than that of its subspace (c₀). This follows since (c) is obviously the set of all elements of the form $x = x^{(0)} + tX_1$, where $X_1 = (1, 1, \dots), x^{(0)} \in (c_0)$, and t is a number. If $x = \{x_i\}$ is any element of (c), the linear functional $a(x) = t = \lim_{n \to \infty} x_n$ is of norm 1, and vanishes on the subspace (c₀). Now it is a remark of Bohnenblust³ that for any subspace of a normed linear space L defined by the vanishing of a fixed linear functional on L, there exist projections of norm less than or equal to $2 + \epsilon$, for arbitrary $\epsilon > 0$. Consequently there are projections of (c) on (c₀) of norm less than or equal to $2 + \epsilon$.

There are projections of (c) on (c_0) which are of norm exactly 2, as may be seen as follows. If $x = (x^{(0)} + tX_1) \in (c)$, the general form of a projection of (c) on (c_0) is

$$Px = x + t\{b_i\} = x^{(0)} + t(X_1 + \{b_i\})$$

where $\{b_i\}$ is any sequence of constants such that $\lim_{i\to\infty} b_i = -1.4$ To calculate the norm of P, we have $||Px|| \leq ||x|| + |t| \cdot \sup_i |b_i|$, and $||x|| = ||x^{(0)} + tX_1|| = \sup_i |x_i^{(0)} + t| \geq |t|$ since $x_i^{(0)} \to 0$. Therefore $|P| \leq 1 + \sup_i |b_i|$, and because of Taylor's result this has the value

⁴ See Taylor, op. cit.

¹ The extension of linear functionals, Duke Mathematical Journal, vol. 5 (1939), pp. 538-547; p. 547.

² On linear transformations, Transactions of this Society, vol. 48 (1940), pp. 516-541; pp. 539-540.

⁸ Convex regions and projections in Minkowski spaces, Annals of Mathematics, (2), vol. 39 (1938), pp. 301-308; p. 308.