ZERO-DIMENSIONAL FAMILIES OF SETS¹

SAMUEL EILENBERG AND E. W. MILLER

A family $\Phi = \{A_{\alpha}\}$ of subsets of a topological space X will be called 0-dimensional if given an open set U such that $A_{\alpha_0} \subset U$, there is an open set V such that (1) $A_{\alpha_0} \subset V \subset U$ and (2) $(\overline{V} - V) \sum_{\alpha} A_{\alpha} = 0$. We enumerate below a few of the most common 0-dimensional families. In each case the proof of 0-dimensionality is easy, and is therefore omitted.

(I) Every family of disjoint open subsets of a topological space is 0-dimensional.

(II) Let Y be a locally connected subset of a topological space X. The family Φ of the components of Y is 0-dimensional.

(III) Let Y be a compact and closed subset of a metric space X. The family Φ of the components of Y is 0-dimensional.

(IV) Let Y be a subset of a metric space X. The family Φ consisting of the individual points of Y is 0-dimensional if and only if dim Y=0.

(V) Let Φ be a family of closed subsets of a compact metric space X. If, given any sequence F, F_1 , F_2 , \cdots of sets of Φ , the relation $F \cdot \lim \inf F_i \neq 0$ implies $\lim \inf F_i \subset F$, then the family Φ is called *upper-semi-continuous*. In this case the sets of the family Φ are disjoint. There is a standard way of introducing a topology into the family Φ which leads to a separable metrizable *hyperspace* Φ^* . The family Φ is 0-dimensional if and only if dim $\Phi^*=0$. In particular, Φ is 0-dimensional whenever it is upper-semi-continuous and countable.

(VI) Let Y be a subset of a topological space X and let Y be homeomorphic with a subset of the linear continuum. The family Φ of the components of Y is 0-dimensional.

The purpose of this note is to establish the following theorem:

THEOREM. Let X be a unicoherent Peano continuum,² $\Phi = \{A_{\alpha}\}$ a 0-dimensional family of subsets of X, and x_1 and x_2 two points of X. If none of the sets A_{α} cuts X between x_1 and x_2 ,³ then $\sum_{\alpha} A_{\alpha}$ does not cut X between x_1 and x_2 .

Various corollaries can be obtained by taking X to be the n-sphere

¹ Presented to the Society, December 26, 1939, under the title On 0-dimensional upper-semi-continuous collections.

² A Peano continuum X is called *unicoherent* if given any decomposition $X = X_1 + X_2$ into continua, the set $X_1 \cdot X_2$ is a continuum.

³ A set $A \subset X$ cuts X between x_1 and x_2 if X - A contains no continuum joining x_1 and x_2 .