ON TRIGONOMETRICAL SERIES WHOSE COEFFICIENTS DO NOT TEND TO ZERO ${ }^{1}$

R. SALEM

Let $\sum \rho_{n} \cos \left(n x-\alpha_{n}\right)$ be a series (S) such that

$$
\begin{equation*}
\rho_{n} \geqq 0, \quad \lim \sup \rho_{n}>0 \tag{1}
\end{equation*}
$$

It is well known that the set E of convergence of S is of measure zero, a result due to Cantor and Lebesgue. More recently Rajchman has proved that E is a sum of an enumerable sequence of H-sets, and so in particular (an H-set being closed and of measure zero) that E is of the first category. ${ }^{2}$

We propose to establish a more precise property of the sets E and to show the connection between these sets and sets of absolute convergence (that is, sets in which a trigonometrical series can converge absolutely without being absolutely convergent everywhere).

We propose to call, in memory of Rajchman, "set of the type R " any set E such that a series (S) exists which satisfies the condition (1) and converges in $E . E$ being a sum of closed sets it is natural to investigate the properties of perfect sets of the type R. Let P be such a set. For every x belonging to P we must have $\lim \rho_{n} \cos \left(n x-\alpha_{n}\right)=0$. But by (1) there exists an infinite sequence of integers $\left\{n_{k}\right\}$ such that $\rho_{n_{k}}>r>0$. Hence,

$$
\begin{equation*}
\lim \cos \left(n_{k} x-\alpha_{n_{k}}\right)=0 \tag{2}
\end{equation*}
$$

We can assume, without loss of generality that the point $x=0$ belongs to P. Hence

$$
\begin{equation*}
\lim \cos \alpha_{n_{k}}=0 \tag{3}
\end{equation*}
$$

(2) and (3) give immediately

$$
\begin{equation*}
\lim \left|\sin n_{k} x \sin \alpha_{n_{k}}\right|=0 \tag{4}
\end{equation*}
$$

and as by (3)

$$
\begin{equation*}
\lim \left|\sin n_{k} x \cos \alpha_{n_{k}}\right|=0 \tag{5}
\end{equation*}
$$

we get, by adding (4) and (5),

$$
\begin{equation*}
\lim \left|\sin n_{k} x\right|=0 \tag{6}
\end{equation*}
$$

${ }^{1}$ Presented to the Society, May 2, 1941.
${ }^{2}$ See Zygmund, Trigonometrical Series, Warsaw, 1935, pp. 267-270.

