ON A THEOREM BY J. L. WALSH CONCERNING THE MODULI OF ROOTS OF ALGEBRAIC EQUATIONS

ALEXANDER OSTROWSKI

In 1881 A. E. Pellet published ${ }^{1}$ the following very useful theorem:
If the polynomial

$$
\begin{align*}
F(z) \equiv & \left|a_{0}\right|+\left|a_{1}\right| z+\left|a_{2}\right| z^{2}+\cdots+\left|a_{k-1}\right| z^{k-1} \tag{1}\\
& -\left|a_{k}\right| z^{k}+\left|a_{k+1}\right| z^{k+1}+\cdots+\left|a_{n}\right| z^{n} \\
& 0<k<n, a_{0} a_{n} \neq 0
\end{align*}
$$

has two positive roots x_{1} and $x_{2}\left(x_{1}<x_{2}\right)$, then the polynomial

$$
\begin{equation*}
f(z) \equiv a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n} \tag{2}
\end{equation*}
$$

has no roots in the annulus $x_{1}<|z|<x_{2}$ and precisely k roots in the circle $|z| \leqq x_{1}$.

While Pellet's proof for his theorem utilizes the theorem of Rouché, J. L. Walsh published in 1924^{2} another more direct proof and established in the same memoir a sort of converse of Pellet's theorem. To formulate his result, consider the set \mathfrak{F} of all polynomials

$$
\begin{equation*}
f(z) \equiv a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n} \tag{3}
\end{equation*}
$$

which correspond to given moduli of coefficients. All polynomials of \mathfrak{F} are obtained from one of them, $f(z)$, if the factors $\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n}$ in the expression

$$
\begin{equation*}
\epsilon_{0} a_{0}+\epsilon_{1} a_{1} z+\epsilon_{2} a_{2} z^{2}+\cdots+\epsilon_{n} a_{n} z^{n} \tag{4}
\end{equation*}
$$

assume independently all values of modulus 1 . Let \mathfrak{M} be the set of roots of all polynomials in \mathfrak{F}. It is immediately seen that if \mathfrak{M} contains a number α it also contains all numbers with the modulus $|\alpha|$.

It was proved by Cauchy that all roots of (4) lie on or within the circle $|z|=y_{1}$, where y_{1} is the single positive root of the polynomial

$$
\left|a_{0}\right|+\left|a_{1}\right| z+\cdots+\left|a_{n-1}\right| z^{n-1}-\left|a_{n}\right| z^{n}
$$

and that all roots of (4) lie on or are exterior to the circle $|z|=y_{2}$, where y_{2} is the single positive root of the polynomial

[^0]
[^0]: ${ }^{1}$ A. E. Pellet: Sur un mode de séparation des racines des équations et la formule de Lagrange, Bulletin des Sciences Mathématiques, (2), vol. 5 (1881), pp. 393-395.
 ${ }^{2}$ J. L. Walsh: On Pellet's theorem concerning the roots of a polynomial, Annals of Mathematics, vol. 26 (1924), pp. 59-64.

