POWER SERIES THE ROOTS OF WHOSE PARTIAL SUMS LIE IN A SECTOR ${ }^{1}$

LOUIS WEISNER

If the roots of the partial sums of a power series $f(z)=\sum a_{n} z^{n}$ lie in a sector with vertex at the origin and aperture $\alpha<2 \pi$, the power series cannot have a positive finite radius of convergence. ${ }^{2}$ But if $f(z)$ is an entire function, the roots of its partial sums may lie in such a sector. The question arises: what restrictions are imposed on $f(z)$ by the requirement that α be sufficiently small, say $\alpha<\pi$? According to a theorem of Pólya the order of $f(z)$ must be not greater than 1 if the radius of convergence of the power series is positive. ${ }^{3}$ Without this assumption the investigation which follows shows that if $\alpha<\pi, f(z)$ is an entire function of order 0 . This result was obtained by Pólya for the case in which $\alpha=0 .{ }^{4}$

Lemma. If the complex numbers $z_{1}, \cdots, z_{n}\left(z_{1} \cdots z_{n} \neq 0\right)$ lie in a sector with vertex at the origin and aperture $\alpha<\pi$, then

$$
\begin{equation*}
\frac{n \cos \alpha / 2}{\left|\sum_{k=1}^{n} z_{k}^{-1}\right|} \leqq\left|z_{1} \cdots z_{n}\right|^{1 / n} \leqq \frac{1}{n} \sec \alpha / 2\left|\sum_{k=1}^{n} z_{k}\right| . \tag{1}
\end{equation*}
$$

When $\alpha=0$ equality occurs if and only if $z_{1}=\cdots=z_{n}$. When $\alpha>0$ equality occurs if and only if n is even and $n / 2$ of the numbers are equal to $r e^{i \phi}(r>0 ; 0 \leqq \phi<2 \pi)$ and the other $n / 2$ numbers are equal to $r e^{i(\phi+\alpha)}$.

Suppose first that the sector is $-\alpha / 2 \leqq$ am $z \leqq \alpha / 2$. Let the n numbers be

$$
z_{k}=\left|z_{k}\right| e^{i \theta_{k}}, \quad-\alpha / 2 \leqq \theta_{k} \leqq \alpha / 2 ; k=1, \cdots, n
$$

Since

$$
\begin{equation*}
\sum_{k=1}^{n} z_{k}=\sum_{k=1}^{n}\left|z_{k}\right| \cos \theta_{k}+i \sum_{k=1}^{n}\left|z_{k}\right| \sin \theta_{k} \tag{2}
\end{equation*}
$$

${ }^{1}$ Presented to the Society, April 27, 1940.
${ }^{2}$ This follows from Jentzsch's theorem: every point on the circle of convergence of a power series is a limit point of roots of its partial sums. See R. Jentzsch, Untersuchungen zur Theorie der Folgen analytischer Funktionen, Acta Mathematica, vol. 41 (1917), p. 219; E. C. Titchmarsh, Theory of Functions, 1932, p. 238.
${ }^{3}$ G. Pólya, Ueber Annäherung durch Polynome deren sämtliche Wurzeln in einen Winkelraum fallen, Nachrichten der Gesellschaft der Wissenschaften zu Göttingen, 1913, pp. 325-330.
${ }^{4}$ G. Pólya, Ueber Annäherung durch Polynome mit lauter reellen Wurzeln, Rendiconti del Circolo Matematico di Palermo, vol. 36 (1913), pp. 279-295.

