$$
(A+B) C \leqq A C+B C
$$

and our theorem is proved.
We can also prove the following:
3.2. Corollary. A necessary and sufficient condition that

$$
(A+B) C=A C+B C
$$

for positive A, B, and C is that either $C=1$, or $1<C<\omega$ and $\alpha_{0} \leqq \beta_{0}$, or $\omega \leqq C$ and $\alpha_{0}+\gamma_{0}<\beta_{0}+\gamma_{0}$.

This corollary follows quite easily from the reasoning found in the preceding section.

Cornell University

THE DECOMPOSITION THEOREM FOR ABELIAN GROUPS ${ }^{1}$

JOEL BRENNER

Let G be an abelian group such that $p^{k} g=0$ for all $g \in G, p$ prime, k fixed. We prove G has a basis, that is, a set of elements such that each $g \in G$ is uniquely expressible as a linear combination of elements of the set. ${ }^{2}$

Theorem. There exists an ascending chain of sets $B_{i}, 0 \leqq i \leqq k$, of elements of G with the properties:
(i) Every element in B_{i} is of order greater than p^{k-i}.
(ii) The elements in B_{i} are completely linearly independent.
(iii) If the order of the element g in G is greater than p^{k-i}, then there exists a (unique) linear combination z of elements of B_{i} such that the order of $g-z$ is at most p^{k-i}.

Since we may choose as B_{0} the vacuous set, we may assume that the sets B_{0}, \cdots, B_{s} have already been constructed in such a way as to meet the requirements (i) to (iii). In order to construct B_{s+1} we adjoin to B_{s} any greatest subset C of G with the following properties.
(a) All the elements in C are of order p^{k-s}.
(b) The join B_{s+1} of the sets B_{s} and C is an independent set.

[^0]
[^0]: ${ }^{1}$ Presented to the Society, April 6, 1940.
 ${ }^{2}$ Unique in that the number of nonzero terms in an expression for g is unique and only the arrangement but not the respective values of the nonzero terms may differ in two expressions for g.

