$(A + B)C \leq AC + BC,$

and our theorem is proved.

We can also prove the following:

3.2. COROLLARY. A necessary and sufficient condition that

(A+B)C = AC + BC

for positive A, B, and C is that either C=1, or $1 < C < \omega$ and $\alpha_0 \leq \beta_0$, or $\omega \leq C$ and $\alpha_0 + \gamma_0 < \beta_0 + \gamma_0$.

This corollary follows quite easily from the reasoning found in the preceding section.

CORNELL UNIVERSITY

THE DECOMPOSITION THEOREM FOR ABELIAN GROUPS¹

JOEL BRENNER

Let G be an abelian group such that $p^kg = 0$ for all $g \in G$, p prime, k fixed. We prove G has a basis, that is, a set of elements such that each $g \in G$ is uniquely expressible as a linear combination of elements of the set.²

THEOREM. There exists an ascending chain of sets B_i , $0 \leq i \leq k$, of elements of G with the properties:

(i) Every element in B_i is of order greater than p^{k-i} .

(ii) The elements in B_i are completely linearly independent.

(iii) If the order of the element g in G is greater than p^{k-i} , then there exists a (unique) linear combination z of elements of B_i such that the order of g-z is at most p^{k-i} .

Since we may choose as B_0 the vacuous set, we may assume that the sets B_0, \dots, B_s have already been constructed in such a way as to meet the requirements (i) to (iii). In order to construct B_{s+1} we adjoin to B_s any greatest subset C of G with the following properties.

(a) All the elements in C are of order p^{k-s} .

(b) The join B_{s+1} of the sets B_s and C is an independent set.

[February

116

¹ Presented to the Society, April 6, 1940.

² Unique in that the number of nonzero terms in an expression for g is unique and only the arrangement but not the respective values of the nonzero terms may differ in two expressions for g.