REMARKS ON A NOTE OF MR. R. WILSON AND ON RELATED SUBJECTS ${ }^{1}$

G. SZEGÖ

Introduction. Let $w(x)$ be a nonnegative weight function on the interval $-1 \leqq x \leqq+1$, and let the integral

$$
\begin{equation*}
\int_{-1}^{+1} \log w(x) \cdot\left(1-x^{2}\right)^{-1 / 2} d x=\int_{0}^{\pi} \log w(\cos \theta) d \theta \tag{1}
\end{equation*}
$$

exist in the sense of Lebesgue.
If $\left\{p_{n}(x)=k_{n} x^{n}+\cdots\right\}$ denotes the orthonormal set of polynomials associated with $w(x)$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max _{-1 \leqq x \leqq+1}\left|p_{n}(x)\right|^{1 / n}=1 \tag{2}
\end{equation*}
$$

$a n d^{2}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} k_{n}^{1 / n}=2 \tag{3}
\end{equation*}
$$

In 1921 I found ${ }^{3}$ the following asymptotic formula for the orthogonal polynomials $p_{n}(x)$ for $n \rightarrow \infty$, holding for x not on the segment $[-1,+1]$:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} z^{n} p_{n}(x)=\Delta(z) \tag{4}
\end{equation*}
$$

where $2 x=z+z^{-1},|z|<1$, and $\Delta(z)$ is a certain analytic function regular and nonzero for $|z|<1$. Of course, $\Delta(z)$ depends on the weight function $w(x)$. The formula (4) holds uniformly for

$$
|z| \leqq r, r<1
$$

From this result the formulas (3) and, by an additional elementary remark (cf. below (9)), (2) follow immediately. Also it furnishes (cf. OP, p. 302, Theorem 12.7.1) :

$$
\begin{equation*}
\lim _{n \rightarrow \infty} 2^{-n} k_{n}=\pi^{-1 / 2} \exp \left\{-\frac{1}{2 \pi} \int_{0}^{\pi} \log w(\cos \theta) d \theta\right\} \tag{5}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ Presented to the Society, February 24, 1940.
 ${ }^{2}$ Concerning the notation see my book Orthogonal Polynomials (American Mathematical Society Colloquium Publications, vol. 23, 1939). Hereafter this book will be referred to as OP.
 ${ }^{3}$ G. Szegö, Über die Entwickelung einer analytischen Funktion nach den Polynomen eines Orthogonalsystems, Mathematische Annalen, vol. 82 (1921), pp. 188-212; p. 191. Cf. also OP, p. 290, Theorem 12.1.2.

