A NEW APPROACH TO THE CRITICAL VALUE THEORY

W. MAYER

The well known inequalities of M. Morse have as algebraical foundation the rank-equations

(I)
$$rB_i(\Sigma - \Sigma_1) = rB_i(\Sigma) - rB_i(\Sigma_1) + rD_i(\Sigma_1, \Sigma) + rD_{i-1}(\Sigma_1, \Sigma),$$
$$i = 0, 1, 2, \cdots.$$

These formulas hold for any topological group-system Σ , any subsystem Σ_1 of Σ , and the difference-system $\Sigma - \Sigma_1$. (W. Mayer, Topologische Gruppensysteme, Monatshefte für Mathematik und Physik, vol. 47 (1938); henceforth referred to as M, TG.) Here $B_i(\Sigma)$ denotes the *i*-dimensional Betti group of Σ , while $B_i(\Sigma_1)$ and $B_i(\Sigma - \Sigma_1)$ are these groups for Σ_1 and $\Sigma - \Sigma_1$ respectively. The symbol $r(\cdot)$, of course, stands for the rank of the group in the parentheses. By $D_i(\Sigma_1, \Sigma)$ we mean the subgroup of $B_i(\Sigma_1)$ containing all the classes of this group whose elements bound in Σ .

The formula (I) was first derived for the case of a complex in Lefschetz' *Topology*, 1930 (p. 150), and independently for the complex modulo 2 by J. Rybarz, Monatshefte für Mathematik und Physik (1931).

In the generality needed here the proof of (I) is given in M, TG (pp. 54-57), under the assumption, of course, that all the ranks appearing in (I) are finite, since otherwise the formula would be meaningless. But the proof there given shows also that

- (a) $rB_i(\Sigma \Sigma_1) = \infty$ implies that either $rB_i(\Sigma)$ or $rD_{i-1}(\Sigma_1, \Sigma)$, or both, are infinite;
- (b) $rB_i(\Sigma \Sigma_1)$ finite implies $rD_{i-1}(\Sigma_1, \Sigma)$ finite, and if in addition $rB_i(\Sigma_1)$ is finite then $rB_i(\Sigma)$ is finite too; and
- (c) $rB_i(\Sigma \Sigma_1) = 0$ implies $rD_{i-1}(\Sigma_1, \Sigma) = 0$ and if in addition $rB_i(\Sigma_1)$ is finite, then $rB_i(\Sigma_1) = rB_i(\Sigma) + rD_i(\Sigma_1, \Sigma)$.

As an immediate consequence of equations (I) we notice the inequality

$$(I') rB_i(\Sigma) \leq rB_i(\Sigma_1) + rB_i(\Sigma - \Sigma_1),$$

which is true whenever the terms on the right are finite (remark (b)) and trivial otherwise. The next step in attaining the Morse inequalities is the application of (I) to m+2 topological group-systems satisfying the inclusion relations

$$(1) \Sigma_m \supset \Sigma_{m-1} \supset \cdots \supset \Sigma_0 \supset \Sigma_{-1}$$