ON REARRANGEMENTS OF SERIES ${ }^{1}$

RALPH PALMER AGNEW

1. Introduction. Let E denote the metric space in which a point x is a permutation $x_{1}, x_{2}, x_{3}, \cdots$ of the positive integers and the distance (x, y) between two points $x \equiv\left\{x_{1}, x_{2}, \cdots\right\}$ and $y \equiv\left\{y_{1}, y_{2}, \cdots\right\}$ of E is given by the Fréchet formula

$$
(x, y)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\left|x_{n}-y_{n}\right|}{1+\left|x_{n}-y_{n}\right|}
$$

The space E is of the second category (Theorem 2).
Let $c_{1}+c_{2}+\cdots$ be a convergent series of real terms for which $\sum\left|c_{n}\right|=\infty$. To simplify typography, we write $c(n)$ for c_{n}. To each $x \varepsilon E$ corresponds a rearrangement $c\left(x_{1}\right)+c\left(x_{2}\right)+\cdots$ of the series $\sum c_{n}$. By a well known theorem of Riemann, $x \in E$ exists such that $c\left(x_{1}\right)+c\left(x_{2}\right)+\cdots$ converges to a preassigned number, diverges to $+\infty$ or to $-\infty$, or oscillates in a preassigned fashion.

The set A of x ع E for which $c\left(x_{1}\right)+c\left(x_{2}\right)+\cdots$ converges is therefore a proper subset of E, and M. Kac has proposed the problem of determining whether $E-A$ is of the second category. The following theorem shows not only that A is of the first category (and hence that $E-A$ is of the second category) but also that the set of $x \varepsilon E$ for which the series $c\left(x_{1}\right)+c\left(x_{2}\right)+\cdots$ has unilaterally bounded partial sums is of the first category.

Theorem 1. For each $x \in E$ except those belonging to a set of the first category,

$$
\liminf _{N \rightarrow \infty} \sum_{n=1}^{N} c\left(x_{n}\right)=-\infty, \quad \limsup _{N \rightarrow \infty} \sum_{n=1}^{N} c\left(x_{n}\right)=\infty
$$

2. Proof of Theorem 1. The fact that the "coordinates" x_{n} and y_{n} of two points x and y of E are integers implies roughly that, if N is large, then $x_{n}=y_{n}$ for $n=1,2, \cdots, N$ if and only if (x, y) is near 0 . To make this precise, let $x \varepsilon E, r>0$, and let $S(x, r)$ denote the set of points y such that $(x, y)<r$, so that $S(x, r)$ is an open sphere with center at x and radius r. It is easy to show that if x and y are two points of E such that $y \varepsilon S\left(x, 2^{-N-1}\right)$ then $x_{n}=y_{n}$ when $n=1,2, \cdots, N$; and that if x and y are such that $x_{n}=y_{n}$ when $n=1,2, \cdots, N$ then $y \in S\left(x, 2^{-N}\right)$.
[^0]
[^0]: ${ }^{1}$ Presented to the Society, October 28, 1939.

