ON REARRANGEMENTS OF SERIES¹

RALPH PALMER AGNEW

1. Introduction. Let *E* denote the metric space in which a point *x* is a permutation x_1, x_2, x_3, \cdots of the positive integers and the distance (x, y) between two points $x \equiv \{x_1, x_2, \cdots\}$ and $y \equiv \{y_1, y_2, \cdots\}$ of *E* is given by the Fréchet formula

$$(x, y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}$$

The space E is of the second category (Theorem 2).

Let $c_1+c_2+\cdots$ be a convergent series of real terms for which $\sum |c_n| = \infty$. To simplify typography, we write c(n) for c_n . To each $x \in E$ corresponds a rearrangement $c(x_1)+c(x_2)+\cdots$ of the series $\sum c_n$. By a well known theorem of Riemann, $x \in E$ exists such that $c(x_1)+c(x_2)+\cdots$ converges to a preassigned number, diverges to $+\infty$ or to $-\infty$, or oscillates in a preassigned fashion.

The set A of $x \in E$ for which $c(x_1) + c(x_2) + \cdots$ converges is therefore a proper subset of E, and M. Kac has proposed the problem of determining whether E-A is of the second category. The following theorem shows not only that A is of the first category (and hence that E-A is of the second category) but also that the set of $x \in E$ for which the series $c(x_1) + c(x_2) + \cdots$ has unilaterally bounded partial sums is of the first category.

THEOREM 1. For each $x \in E$ except those belonging to a set of the first category,

$$\liminf_{N\to\infty} \sum_{n=1}^N c(x_n) = -\infty, \qquad \limsup_{N\to\infty} \sum_{n=1}^N c(x_n) = \infty.$$

2. **Proof of Theorem 1.** The fact that the "coordinates" x_n and y_n of two points x and y of E are integers implies roughly that, if N is large, then $x_n = y_n$ for $n = 1, 2, \dots, N$ if and only if (x, y) is near 0. To make this precise, let $x \in E, r > 0$, and let S(x, r) denote the set of points y such that (x, y) < r, so that S(x, r) is an open sphere with center at x and radius r. It is easy to show that if x and y are two points of E such that $y \in S(x, 2^{-N-1})$ then $x_n = y_n$ when $n = 1, 2, \dots, N$; and that if x and y are such that $x_n = y_n$ when $n = 1, 2, \dots, N$ then $y \in S(x, 2^{-N})$.

¹ Presented to the Society, October 28, 1939.