THE MINIMAL NUMBERS OF BINARY FORMS ${ }^{1}$

RUFUS OLDENBURGER AND ARTHUR PORGES

1. Introduction. One of us proved that for certain fields K a form F of degree m can be written as a linear combination of m th powers of linear forms. Such a combination is termed a representation of F and the least possible number of terms in any such representation is called the minimal number of F with respect to K. The minimal number depends on both F and K. For fields K with characteristic greater than n, and binary forms F of degree n, it has been proved ${ }^{2}$ that the minimal number ranges over at least $1,2, \cdots, n$, and at most $1,2, \cdots, n+1$, but the exact range was not determined. In the present paper the authors prove that the range is precisely $1,2, \cdots, n$.
2. Preliminary lemmas. In what follows we use identity of polynomials in the usual sense, namely polynomials P and Q are identical if the coefficients of P equal the corresponding coefficients of Q.

Since the order of a field K is greater than m if the characteristic of K is greater than m, we have the following lemma.

Lemma 1. For a field K with characteristic greater than m a polynomial P of degree m is equal to a polynomial Q for all values of the variables if and only if P and Q are identical.

An immediate consequence of Lemma 1 is the following lemma.
Lemma 2. For a field K with characteristic greater than m, a polynomial P of degree m not identically zero is different from zero for at least one set of values of the variables.

Lemma 3. Let K be a field with characteristic greater than m. Let Δ be the determinant

$$
\Delta=\left|\begin{array}{cccc}
1 & \cdots & 1 & b_{1} \tag{1}\\
a_{1} & \cdots & a_{m} & b_{2} \\
\cdot & \cdots & & \cdot \\
a_{1}^{m} & \cdots & a_{m}^{m} & b_{m+1}
\end{array}\right|
$$

of order $m+1, m \geqq 1$, with elements in K, and suppose that the b's are not all zero. The determinant Δ is not identically zero in the a's.

[^0]
[^0]: ${ }^{1}$ Presented to the Society, April 13, 1940.
 ${ }^{2}$ R. Oldenburger, Polynomials in several variables, Annals of Mathematics, (2), vol. 41 (1940), no. 3, pp. 694-710.

