as solutions of Bessel's differential equation. Our author, however, follows a different path. His starting point is the wave equation, from which he derives first plane waves, and then, by superposition of these, spherical and cylindrical waves. This leads immediately to the Sommerfeld integral representation of the Hankel functions, which then serve as the basis for defining the J and N functions and for deriving the important properties of the cylinder functions.

The author discusses the following aspects of cylinder functions: power series, asymptotic expansions of Hankel and Debye, various integral representations, recurrence relations, zeros, definite and indefinite integrals, boundary value problems and applications. It will be noted that the author has succeeded in covering the most important topics in a remarkably small number of pages. But the value of the book must not be judged by its brevity. It contains a carefully planned exposition of the theory and will serve as a valuable study and reference book.

С. А. Ѕноок

Differentialgeometrie der Kurven und Flächen und Tensorrechnung. By Václav Hlavatý. Groningen, Noordhoff, 1939. 11+569 pp.

This treatise presents a large portion of the classical differential geometry of one and two dimensional subspaces of ordinary euclidean space. Just enough vector and tensor analysis is given to enable the reader to manage profitably the abbreviated symbolism. Definitions and results are stated in such a way as to generalize readily to higher dimensions.

The first chapter is devoted to curves. After the theory is developed in terms of a general parameter, an account is given of the various specializations arising from the use of the arc length as parameter. In particular, the construction of a curve from its curvature and torsion is treated carefully.

The second chapter concerns those properties of a surface which depend only on its metric tensor. The absolute differential is used systematically. There is an unusually full discussion of the applicability of surfaces, including explicit equations for developing a surface on a plane or on a surface of revolution.

The normal to a surface leads, on differentiation, to a tensor associated with the behavior of the surface toward the ambient space. In the third chapter, those properties are discussed which depend on this (second fundamental) tensor. A feature of this chapter is the discussion of the explicit construction of surfaces having prescribed first or first and second fundamental tensors.

1940]