A FINITELY-CONTAINING CONNECTED SET¹

P. M. SWINGLE

In a previous paper an example has been given of a set which, for every integer $n \ge 2$, is the sum of *n* mutually exclusive connected subsets, but which is not the sum of *infinitely* many such subsets.² Here it is proposed to give an example of a connected set which, for every integer $n \ge 2$, is the sum of *n* mutually exclusive *biconnected* subsets but which is not the sum of infinitely many mutually exclusive connected subsets. This example has the further property that, for every such *n*, it contains *n* mutually exclusive connected subsets but it does not contain infinitely many such subsets, being thus a finitely-containing connected set.³ The method used will be a modification of that used by E. W. Miller to obtain a biconnected set without a dispersion point.⁴ The hypothesis of the continuum is assumed, and use is made of the axiom of Zermelo.

The method used by Miller is dependent primarily upon showing

⁸ Loc. cit., p. 395, Problem 7. This example also solves the questions raised in Problems 4, 5, and 6, pp. 394-395. Problem 2 was answered in part in American Journal of Mathematics, vol. 54 (1932), pp. 532-535. On p. 533 it is proved for n=2that E_n is the sum of m mutually exclusive biconnected subsets where m is an integer greater than n. And it is said that the proof is similar for n > 2. For E_2 the proof depends upon constructing 3 biconnected sets, having only the origin in common. That a similar construction holds for any E_n , (n > 1), is seen as follows. The half cones $x_1^2 + x_2^2 + \cdots + x_{n-1}^2 = ax_n^2$, $(x_n \ge 0, -\infty < a < \infty)$, of E_n are each n-1 dimensional surfaces. As each one is composed of concentric spheres $x_1^2 + x_2^2 + \cdots + x_{n-1}^2 = r^2$ as is also E_{n-1} , each half cone and E_{n-1} are topologically equivalent. As for n=3, E_{n-1} is the sum of n biconnected sets, with only the origin in common, a mathematical induction proof will show that this is true for n > 3. For let the a's be divided into $C_{n+1,n}$ ($C_{n+1,n}$ is a binomial coefficient) mutually exclusive sets N_1, \dots, N_c , each dense in their sum. Let, for each a of N_i , $(i=1, \dots, c)$, $x_1^2 + x_2^2 + \dots + x_{n-1}^2 = ax_n^2$ be the sum of parts of the same n biconnected sets, where there is a total of n+1 such sets B_i , mutually exclusive except that they have the origin in common. Those B_i 's determined by N_i will be represented by the subscripts of that combination of 1, 2, \cdots , n+1, taken n at a time, that i of N_i represents. Then the above is seen to be true.

⁴ E. W. Miller, *Concerning biconnected sets*, Fundamenta Mathematicae, vol. 29, pp. 123-133.

¹ Presented to the Society, April 15, 1939.

² P. M. Swingle, *Generalizations of biconnected sets*, American Journal of Mathematics, vol. 53 (1931), pp. 387–388. I call such a set a *finitely-divisible connected set*. A connected set is defined here so as to contain at least two points. The example there given consists of a connected set which is the sum of infinitely many mutually exclusive biconnected subsets, each with a dispersion point, and a limit point of these subsets which none of them contains.