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In a previous paper an example has been given of a set which, for 
every integer n ^ 2, is the sum of n mutually exclusive connected sub­
sets, but which is not the sum of infinitely many such subsets.2 Here 
it is proposed to give an example of a connected set which, for every 
integer n^2, is the sum of n mutually exclusive biconnected subsets 
but which is not the sum of infinitely many mutually exclusive con­
nected subsets. This example has the further property that, for every 
such n, it contains n mutually exclusive connected subsets but it does not 
contain infinitely many such subsets, being thus a finitely-containing 
connected set.z The method used will be a modification of that used by 
E. W. Miller to obtain a biconnected set without a dispersion point.4 

The hypothesis of the continuum is assumed, and use is made of the 
axiom of Zermelo. 

The method used by Miller is dependent primarily upon showing 
1 Presented to the Society, April 15, 1939. 
2 P. M. Swingle, Generalizations of biconnected sets, American Journal of Mathe­

matics, vol. 53. (1931), pp. 387-388. I call such a set a. finitely-divisible connected set. 
A connected set is denned here so as to contain at least two points. The example 
there given consists of a connected set which is the sum of infinitely many mutually 
exclusive biconnected subsets, each with a dispersion point, and a limit point of these 
subsets which none of them contains. 

3 Loc. cit., p. 395, Problem 7. This example also solves the questions raised in 
Problems 4, 5, and 6, pp. 394-395. Problem 2 was answered in part in American 
Journal of Mathematics, vol. 54 (1932), pp. 532-535. On p. 533 it is proved for w = 2 
that En is the sum of m mutually exclusive biconnected subsets where m is an integer 
greater than n. And it is said that the proof is similar for n>2. For E% the proof 
depends upon constructing 3 biconnected sets, having only the origin in common. 
That a similar construction holds for any En, in > 1), is seen as follows. The half cones 
#i2+#22-r- • • • -\-Xn-i = axn

2, (xn^O, — «> <a< oo), of En are each n — 1 dimensional 
surfaces. As each one is composed of concentric spheres #i2+x2

2+ * * • +xl-i=r2 as 
is also En-i, each half cone and En-i are topologically equivalent. As for n = 3, En~.\ is 
the sum of n biconnected sets, with only the origin in common, a mathematical in­
duction proof will show that this is true for n>3. For let the a's be divided into 
Cn+i,n (Cn+i,n is a binomial coefficient) mutually exclusive sets Nh • • • , Nc, each 
dense in their sum. Let, for each a of Ni, (i = l, • • • , c), #i2+x2

2+ • * * -\-xn
2-i=axn

2 

be the sum of parts of the same n biconnected sets, where there is a total of n -\-1 such 
sets Bj, mutually exclusive except that they have the origin in common. Those £ / s 
determined by Ni will be represented by the subscripts of that combination of 
1, 2, • • • , w + 1, taken n at a time, that i of Ni represents. Then the above is seen 
to be true. 

4 E. W. Miller, Concerning biconnected sets, Fundamenta Mathematicae, vol. 29, 
pp. 123-133. 
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