AN APPLICATION OF E. H. MOORE'S DETERMINANT OF A HERMITIAN MATRIX*

N. JACOBSON

E. H. Moore defined a determinant for any hermitian matrix with elements in a "number system of type B."[†] In more descriptive language, a system Φ of this type may be characterized as a quasi-field of characteristic not equal to 2 in which there is defined an involutorial anti-automorphism or *involution* $a \rightarrow \bar{a}$:

$$\overline{a+b} = \overline{a} + \overline{b}, \quad \overline{ab} = \overline{b}\overline{a}, \quad \overline{a} = a,$$

such that the symmetric elements $(\bar{a}=a)$ are contained in the center. It follows readily that Φ is either commutative with $\bar{a}\equiv a$, a quadratic field over the field of symmetric elements, or a generalized quaternion algebra over this field. An examination of Moore's theory of determinants shows that it is entirely integral, and hence it is valid if Φ is any ring with an identity in which there is a unique element 1/2such that $2(1/2)\equiv 1/2+1/2=1$ and which has an involution $a\rightarrow \bar{a}$ whose symmetric elements are in the center Γ of Φ .

The uniqueness of 1/2 implies its symmetry. If $2a \equiv a+a=0$, then 0 = (a+a)/2 = a/2 + a/2 = (1/2+1/2)a = a. Let Σ and P respectively denote the sets of symmetric and of skew elements $(\bar{a} = -a)$ of Φ . Then Σ and P are subgroups under the operation +. If $b \in \Sigma \cap P$, b = -b, 2b = 0, and hence b = 0. For any a we have

$$a = \frac{1}{2}(a + \bar{a}) + \frac{1}{2}(a - \bar{a}) = Sa + Va,$$

where $Sa \in \Sigma$, $Va \in P$. Thus the additive group of Φ is a direct sum of Σ and P. We call Sa and Va respectively the scalar and the vector parts of a. Now Σ is a subring of Γ , and P is closed under multiplication by elements in Σ and under commutation [u, v] = uv - vu. Hence, for any two elements $a, b, [a, b] = [Va, Vb] \in P$. Thus S[a, b] = 0 and since, in general, S(a+b) = Sa + Sb, Sab = Sba. Moreover, $a\bar{a}$ and $\bar{a}a$ are symmetric, $a\bar{a} - \bar{a}a$ skew. Hence $a\bar{a} = \bar{a}a$. As usual we call this element, the norm of a, Na and note that Nab = (Na)(Nb). Any element a satisfies a quadratic equation with coefficients in Σ , namely,

 $x^2 - (2Sa)x + Na = 0.$

^{*} Presented to the Society, February 25, 1939.

[†] See Moore and Barnard, *General Analysis* I, American Philosophical Society Publication, chap. 2. We refer to this volume as M-B.