AN APPLICATION OF E. H. MOORE'S DETERMINANT OF A HERMITIAN MATRIX*

N. JACOBSON

E. H. Moore defined a determinant for any hermitian matrix with elements in a "number system of type $B . " \dagger$ In more descriptive language, a system Φ of this type may be characterized as a quasi-field of characteristic not equal to 2 in which there is defined an involutorial anti-automorphism or involution $a \rightarrow \bar{a}$:

$$
\overline{a+b}=\bar{a}+\bar{b}, \quad \overline{a b}=b \bar{a}, \quad \overline{\bar{a}}=a,
$$

such that the symmetric elements ($\bar{a}=a$) are contained in the center. It follows readily that Φ is either commutative with $\bar{a} \equiv a$, a quadratic field over the field of symmetric elements, or a generalized quaternion algebra over this field. An examination of Moore's theory of determinants shows that it is entirely integral, and hence it is valid if Φ is any ring with an identity in which there is a unique element $1 / 2$ such that $2(1 / 2) \equiv 1 / 2+1 / 2=1$ and which has an involution $a \rightarrow \bar{a}$ whose symmetric elements are in the center Γ of Φ.

The uniqueness of $1 / 2$ implies its symmetry. If $2 a \equiv a+a=0$, then $0=(a+a) / 2=a / 2+a / 2=(1 / 2+1 / 2) a=a$. Let Σ and P respectively denote the sets of symmetric and of skew elements $(\bar{a}=-a)$ of Φ. Then Σ and P are subgroups under the operation + . If $b \varepsilon \Sigma \cap P$, $b=-b, 2 b=0$, and hence $b=0$. For any a we have

$$
a=\frac{1}{2}(a+\bar{a})+\frac{1}{2}(a-\bar{a})=S a+V a
$$

where $S a \varepsilon \Sigma, V a \varepsilon \mathrm{P}$. Thus the additive group of Φ is a direct sum of Σ and P. We call $S a$ and $V a$ respectively the scalar and the vector parts of a. Now Σ is a subring of Γ, and P is closed under multiplication by elements in Σ and under commutation $[u, v]=u v-v u$. Hence, for any two elements $a, b,[a, b]=[V a, V b] \varepsilon \mathrm{P}$. Thus $S[a, b]=0$ and since, in general, $S(a+b)=S a+S b, S a b=S b a$. Moreover, $a \bar{a}$ and $\bar{a} a$ are symmetric, $a \bar{a}-\bar{a} a$ skew. Hence $a \bar{a}=\bar{a} a$. As usual we call this element, the norm of $a, N a$ and note that $N a b=(N a)(N b)$. Any element a satisfies a quadratic equation with coefficients in Σ, namely,

$$
x^{2}-(2 S a) x+N a=0
$$

[^0]
[^0]: * Presented to the Society, February 25, 1939.
 \dagger See Moore and Barnard, General Analysis I, American Philosophical Society Publication, chap. 2. We refer to this volume as M-B.

