A THEOREM ON MATRICES OVER A COMMUTATIVE RING

NEAL H. McCOY

1. Introduction. Let R be an arbitrary commutative ring with unit element 1 , and $R[\lambda]$ the ring of polynomials in the indeterminate λ, with coefficients in R. If A is a matrix of order n, with elements in R, the set of all elements $g(\lambda)$ of $R[\lambda]$, such that $g(A)=0$, is an ideal which we shall call the minimum ideal of A. The element $f(\lambda)=|\lambda-A|$ of $R[\lambda]$ is the characteristic function of A, and the principal ideal $(f(\lambda))$ may be called the characteristic ideal of $A .^{*}$ In a recent note, \dagger it was shown that the minimum ideal of a matrix can be characterized in a manner generalizing Frobenius' characterization of the minimum function of a matrix for the case in which the coefficient domain is a field. \ddagger It was also shown that, in $R[\lambda]$, the prime ideal divisors of the minimum ideal coincide with those of the characteristic ideal. If R is specialized to be an algebraically closed field, this result yields the familiar theorem to the effect that the distinct linear factors of the characteristic function of A coincide with the distinct linear factors of the minimum function of A. It is the primary purpose of the present note to generalize, in a similar way, the well known theorem of Frobenius concerning the characteristic roots of a polynomial in two or more commutative matrices-or, more precisely, an extension of this theorem which we shall now describe in some detail.

Let K denote an algebraically closed field, and let us say that the matrices $A_{i},(i=1,2, \cdots, m)$, with elements in K, have property P, if the characteristic roots of every scalar polynomial $f\left(A_{1}, A_{2}, \cdots, A_{m}\right)$, with coefficients in K, are all of the form $f\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\right)$ where λ_{i} is a characteristic root of $A_{i},(i=1,2, \cdots, m)$.

In a previous paper, § the following statements were shown to be equivalent:
I. The matrices $A_{i},(i=1,2, \cdots, m)$, have property P.

[^0]
[^0]: * The terms minimum ideal and characteristic ideal are used merely to emphasize that they generalize the usual notions of minimum and characteristic functions, respectively.
 \dagger Neal H. McCoy, Concerning matrices with elements in a commutative ring, this Bulletin, vol. 45 (1939), pp. 280-284.
 \ddagger For the classical theorems concerning the characteristic and minimum functions and related topics, see C. C. MacDuffee, The Theory of Matrices, chap. 2, or J. H. M. Wedderburn, Lectures on Matrices, chap. 2.
 § N. H. McCoy, On the characteristic roots of matric polynomials, this Bulletin, vol. 42 (1936), pp. 592-600. Hereafter this will be referred to as M.

