A NOTE ON DIVISIBILITY SEQUENCES*

MORGAN WARD

1. Introduction. A sequence of rational integers

$$
(u): u_{0}, u_{1}, u_{2}, \cdots, u_{n}, \cdots
$$

is called a divisibility sequence if u_{r} divides u_{s} whenever r divides s, and any integer M dividing terms of (u) with positive suffix is called a divisor of (u). The suffix s is called a rank of apparition of M if $u_{s} \equiv 0(\bmod M)$, but $u_{r} \neq 0(\bmod M)$ if r is a proper divisor of s. It follows from a previous note of mine in this Bulletin (Ward [1]) that a necessary and sufficient condition that every divisor of (u) shall have only one rank of apparition is that (u) have the following property:
A. If $c=(a, b)$, then $u_{c}=\left(u_{a}, u_{b}\right)$ for every pair of terms u_{a}, u_{b} of (u).

Assume that no $u_{r}=0,(r>0)$. Then we may introduce numbers

$$
\begin{aligned}
& {[n, r]=u_{n} \cdot u_{n-1} \cdot \cdots \cdot u_{n-r+1} / u_{1} \cdot u_{2} \cdots \cdot u_{r},} \\
& \\
& \quad r=1, \cdots, n ; n=1,2, \cdots,
\end{aligned}
$$

which we call the binomial coefficients belonging to $(u) . \dagger$
In a previous paper (Ward [1]), I proved a result equivalent to the following theorem:

Theorem 1. If every divisor of (u) has only one rank of apparition, the binomial coefficients belonging to (u) are rational integers.

I give here a simple sufficient condition for integral binomial coefficients applicable when the divisors of (u) have several ranks of apparition.
2. Main theorem. Let (v) be any sequence of rational integers subject to the single condition $v_{r} \neq 0,(r>0)$. The sequence (u) will be said to have the property C if

$$
u_{n}=\coprod_{d \backslash n} v_{d}
$$

the product being extended over all divisors d of n.

[^0]
[^0]: * Presented to the Society, February 25, 1939.
 \dagger If $u_{n}=n$, they reduce to ordinary binomial coefficients. For their properties for general (u), see Ward [2].

