DIOPHANTINE EQUATIONS WHOSE MEMBERS ARE HOMOGENEOUS*

A. A. AUCOIN AND W. V. PARKER

Desboves \dagger has stated that a necessary and sufficient condition for the equation $a x^{m}+b y^{m}=c z^{n}$ to have a solution in integers is that c be of the form $a s^{m}+b t^{m}$. This would seem to imply \ddagger that the values of c are restricted whatever be the values of m and n. That this is not the case follows from our first theorem:

Theorem 1. If f and g are homogeneous polynomials with integral coefficients, of degrees m and n, respectively, where m and n are relatively prime, then the equation

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \cdots, x_{r}\right)=g\left(y_{1}, y_{2}, \cdots, y_{s}\right) \tag{1}
\end{equation*}
$$

always has solutions in integers x_{i} and y_{j}; and every solution in which the members of (1) do not vanish is equivalent (in a sense to be defined) to one of the infinitude of solutions given by

$$
\begin{equation*}
x_{i}=\alpha_{i}[f(\alpha)]^{n-p}[g(\beta)]^{p}, \quad y_{j}=\beta_{j}[f(\alpha)]^{m-q}[g(\beta)]^{q}, \tag{2}
\end{equation*}
$$

where α_{i} and β_{j} are arbitrary integers, p and q are integers defined by

$$
\begin{equation*}
0 \leqq p \leqq n, \quad 0 \leqq q \leqq m, \quad m p-n q=1 \tag{3}
\end{equation*}
$$

and $f(\alpha)=f\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}\right), g(\beta)=g\left(\beta_{1}, \beta_{2}, \cdots, \beta_{s}\right)$.
Since m and n are relatively prime, there exist integers p and $q \S$ such that $0 \leqq p \leqq n, 0 \leqq q \leqq m, m p=n q+1$, and consequently $n(m-q)=m(n-p)+1$.

If in (1) we let

$$
\begin{equation*}
x_{i}=\alpha_{i} t^{p} u^{n-p}, \quad y_{j}=\beta_{j} t^{q} u^{m-q}, \tag{4}
\end{equation*}
$$

we have\|

[^0]
[^0]: * Presented to the Society, April 15, 1939.
 \dagger A. Desboves, Mémoire sur la résolution en nombres entières de l'équation $a x^{m}+b y^{m}=c z^{n}$, Nouvelles Annales de Mathématiques, (2), vol. 18 (1879), p. 481. An examination of Desboves's proof shows that he really means that c multiplied by the nth power of an integer u must be of the form $a s^{m}+b t^{m}$. His statement therefore appears to be a mere tautology.
 \ddagger For other examples suggesting the same notion, see Carmichael, Diophantine Analysis, p. 53, example 14; p. 54, example 21; p. 73, examples $24,25$.
 § Barnard and Child, Higher Algebra, p. 415.
 $\|$ Since for a homogeneous function of degree $n, f(a z)=a^{n} f(z)$.

