ON GREEN'S FUNCTIONS IN THE THEORY OF HEAT CONDUCTION IN SPHERICAL COORDINATES \dagger

ARNOLD N. LOWAN

In a previous paper, \ddagger the writer derived the expressions for the Green's functions in the theory of heat conduction for an infinite cylinder and for an infinite solid, bounded internally by a cylinder.

The object of the present paper is to derive the appropriate Green's functions for a sphere and for an infinite solid bounded internally by a sphere. In both cases, we shall take the boundary condition in the form

$$
\frac{\partial u}{\partial r}+h u=0, \quad r=a
$$

The case of a sphere. In this case we start with the expression

$$
\begin{equation*}
u\left(r, \theta, \phi, t ; r_{0}, \theta_{0}, \phi_{0}\right)=\frac{1}{2(\pi k t)^{3 / 2}} e^{-R^{2} / 4 k t} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
R^{2}=r^{2}+r_{0}^{2}-2 r_{0} \cos \gamma \tag{2}
\end{equation*}
$$

γ being the angle between the radii from the origin to the points (r, θ, ϕ) and ($r_{0}, \theta_{0}, \phi_{0}$). The expression (1) is the point source solution of the differential equation of heat conduction in spherical coordinates.

The expression (1) may be written in the form§

$$
\begin{align*}
u\left(r, \theta, \phi, t ; r_{0}, \theta_{0} ; \phi_{0}\right)=\frac{1}{4 \pi\left(r r_{0}\right)^{1 / 2}} & \sum_{n=0}^{\infty}(2 n+1) P_{n}(\cos \gamma) \tag{3}\\
& \cdot \int_{0}^{\infty} \alpha e^{-k \alpha^{2} t} J_{n+1 / 2}\left(\alpha r_{0}\right) J_{n+1 / 2}(\alpha r) d \alpha
\end{align*}
$$

The corresponding Laplace transform

$$
L\{u(t)\}=\int_{0}^{\infty} e^{-p t} u(t) d t=u^{*}(p)
$$

[^0]
[^0]: \dagger Presented to the Society, October 29, 1938.
 \ddagger This Bulletin, vol. 44 (1938), pp. 125-133. This paper will be referred to as A.N.L.
 § See Carslaw, Mathematical Theory of Heat Conduction, article 93.

