ON FERMAT'S SIMPLE THEOREM

JACK CHERNICK

1. Introduction. Fermat's simple theorem may be stated as follows: If a is any integer prime to m, and if m is prime, then

$$
\begin{equation*}
a^{m-1} \equiv 1(\bmod m) \tag{1}
\end{equation*}
$$

The question naturally arises, "Do there exist composite integers for which the same congruence holds?" For particular values of a the existence of such numbers has long been established.* In 1910, R. D. Carmichael \dagger treated the congruence (1) in the stricter sense indicated. He established several criteria which may be condensed into the following theorem:

Theorem 1. Fermat's theorem holds for composite integers if and only if m may be expressed as a product of distinct odd primes p_{1}, \cdots, p_{n}, $(n>2)$, and $m-1 \equiv 0\left(\bmod p_{i}-1\right)$ where i ranges from 1 to n.

Carmichael listed several such m with $n=3$ and one with $n=4 \cdot$ Many others have since been found by P. Poulet. \ddagger It is our purpose to continue the study of these numbers in the present paper.

Fermat's theorem is sometimes stated thus: If m is any prime and a any integer, then

$$
\begin{equation*}
a^{m} \equiv a(\bmod m) \tag{2}
\end{equation*}
$$

The congruences (1) and (2) are likewise equivalent if m is composite, as is easily shown by the use of Theorem 1.

Despite the apparent promise of Fermat's theorem of yielding a complete and practical test for primes, no modification of it has as yet achieved this goal. However, the recent work of D. H. Lehmer, § based upon a list of solutions of (2) for $a=2$, now provides such a test for integers in the range 10^{7} to 10^{8}.
2. Proof of Theorem 1. We present a short, independent proof of Theorem 1. Let m be a composite number for which (1) holds. First, suppose $m=2^{v},(v>1)$. But $a^{2^{v}-1} \equiv 1\left(\bmod 2^{v}\right)$ will not hold for

[^0]
[^0]: * Dickson, History of the Theory of Numbers, vol. 1, pp. 92-95.
 \dagger This Bulletin, vol. 16 (1910), pp. 232-238; also American Mathematical Monthly, vol. 19 (1912), pp. 22-27.
 \ddagger D. H. Lehmer informs us that all m 's under $5 \cdot 10^{7}$ and all, with $n=3$, under 10^{8} have been tabulated by Poulet.
 § American Mathematical Monthly, vol. 43 (1936), pp. 347-354.

