ALGEBRAIC POSTULATES AND A GEOMETRIC INTER-PRETATION FOR THE LEWIS CALCULUS OF STRICT IMPLICATION

TANG TSAO-CHEN

1. Two further postulates for a Boolean ring with a unit element. If addition, subtraction, and multiplication are properly defined in logic, it may be shown* that the postulates for these operations are identical with those in a ring, in which every element is idempotent, satisfying the postulate xx = x. Such a ring is called a Boolean ring. The postulates for a Boolean ring with a unit element are therefore the following:

A. Addition is always possible, commutative, and associative.

B. Multiplication is always possible, associative, and both left- and right-distributive with respect to addition.

C. Subtraction is always possible.

D. xx = x.

E. There exists an element 1 such that x1 = x for every element x in the ring.

Here we shall introduce a new operation, represented by x^{∞} , which satisfies the following two further postulates:

F₁. For every element x there exists an element x^{∞} such that $x^{\infty}x = x^{\infty}$. F₂. For any two elements x and y we have $(xy)^{\infty} = x^{\infty}y^{\infty}$.

The postulates $A-F_2$, obtained above, may be called the algebraic postulates for the Lewis calculus of strict implication.

2. A geometric meaning of the symbol x^{∞} . A geometric meaning \dagger may be attached to x^{∞} as follows: Let x be a point set in the euclidean

1938]

^{*} See M. H. Stone. The theory of representations for Boolean algebras, Transactions of this Society, vol. 40 (1936), pp. 37–53.

[†] Another geometric meaning of x^{∞} may be obtained by assuming 1^{∞} to be any one fixed point or any set of fixed points (finite or infinite in number and continuous or discontinuous in character) and setting $x^{\infty} = x1^{\infty}$. If we assume that 1^{∞} is a fixed point, we have then the following property:

G. x^{∞} is two-valued, that is, $x^{\infty} = 1^{\infty}$ or 0^{∞} ,

which is independent of the postulates $A-F_2$. This sub-Boolean algebra with the postulates A-G does not become the ordinary two-valued Boolean algebra, unless we assume further that x is two-valued.