ALGEBRAIC POSTULATES AND A GEOMETRIC INTERPRETATION FOR THE LEWIS CALCULUS OF STRICT IMPLICATION

TANG TSAO-CHEN

1. Two further postulates for a Boolean ring with a unit element. If addition, subtraction, and multiplication are properly defined in logic, it may be shown* that the postulates for these operations are identical with those in a ring, in which every element is idempotent, satisfying the postulate $x x=x$. Such a ring is called a Boolean ring. The postulates for a Boolean ring with a unit element are therefore the following:
A. Addition is always possible, commutative, and associative.
B. Multiplication is always possible, associative, and both left- and right-distributive with respect to addition.
C. Subtraction is always possible.
D. $x x=x$.
E. There exists an element 1 such that $x 1=x$ for every element x in the ring.

Here we shall introduce a new operation, represented by x^{∞}, which satisfies the following two further postulates:
F_{1}. For every element x there exists an element x^{∞} such that $x^{\infty} x=x^{\infty}$.
F_{2}. For any two elements x and y we have $(x y)^{\infty}=x^{\infty} y^{\infty}$.
The postulates $\mathrm{A}-\mathrm{F}_{2}$, obtained above, may be called the algebraic postulates for the Lewis calculus of strict implication.
2. A geometric meaning of the symbol x^{∞}. A geometric meaning \dagger may be attached to x^{∞} as follows: Let x be a point set in the euclidean

[^0]
[^0]: * See M. H. Stone. The theory of representations for Boolean algebras, Transactions of this Society, vol. 40 (1936), pp. 37-53.
 \dagger Another geometric meaning of x^{∞} may be obtained by assuming 1^{∞} to be any one fixed point or any set of fixed points (finite or infinite in number and continuous or discontinuous in character) and setting $x^{\infty}=x 1^{\infty}$. If we assume that 1^{∞} is a fixed point, we have then the following property:
 G. x^{∞} is two-valued, that is, $x^{\infty}=1^{\infty}$ or 0^{∞},
 which is independent of the postulates A-F ${ }_{2}$. This sub-Boolean algebra with the postulates A-G does not become the ordinary two-valued Boolean algebra, unless we assume further that x is two-valued.

