ON THE ABSOLUTE SUMMABILITY OF FOURIER SERIES*

W. C. RANDELS

1. Introduction. A series $\sum u_{n}$ is said to be absolutely summable by a method a defined by a matrix $a_{m n}$ if

$$
\sum_{m=1}^{\infty}\left|S_{m}(\mathfrak{a}, u)-S_{m-1}(\mathfrak{a}, u)\right|<\infty,
$$

where

$$
S_{m}(\mathfrak{a}, u)=\sum_{n=0}^{\infty} a_{m n} u_{n}
$$

Similarly a series is said to be absolutely summable $|A|$ if

$$
S(r, u)=\sum_{n=0}^{\infty} u_{n} r^{n} \subset B V \quad \text { on } \quad(0,1) .
$$

It is known that if $\sum u_{n}$ is absolutely summable $\left|C_{\alpha}\right|$ for some $\alpha>0$, then it is absolutely summable $|A|$. There are, however, series absolutely summable $|A|$ but not $\left|C_{\alpha}\right|$ for any α whatever. We intend to give here an example of a Fourier series with that property.

Bosanquet \dagger has proved that, if the Fourier series of $f(x)$ is absolutely summable $\left|C_{\alpha}\right|$, then the function

$$
\phi_{\beta}(f, t)=\beta t^{-\beta} \int_{0}^{t}\{f(x+\tau)+f(x-\tau)-2 f(x)\}(t-\tau)^{\beta-1} d \tau
$$

is of bounded variation on $(0, \pi)$ for $\beta>\alpha$; and conversely, if $\phi_{\alpha}(t)$ is of bounded variation, the Fourier series of $f(x)$ is absolutely summable $\left|C_{\beta}\right|,(\beta>\alpha+1)$.
2. Preliminary definitions. Let $\alpha_{n k}, \beta_{n k}$ be defined for $n=1,2, \cdots$, $k=1,2, \cdots, n$, by

$$
\begin{equation*}
\alpha_{n k}=2^{-k-n-n /(k-1 / 2)}, \quad \beta_{n k}=2^{-n}-2^{-n-n /(k-1 / 2)} . \tag{1}
\end{equation*}
$$

Then, since $k \leqq n$, we have

$$
\beta_{n k}>2^{-n-1}
$$

[^0]
[^0]: * Presented to the Society, December 30, 1937.
 \dagger L. S. Bosanquet, The absolute Cesàro summability of Fourier series, Proceedings of the London Mathematical Society, vol. 41 (1936), pp. 517-528.

