ENUMERATIVE PROPERTIES OF PLANE CONNECTED *n*-LINES

B. C. WONG

1. Introduction. Consider *n* distinct lines a_1, a_2, \dots, a_n , no two of which are parallel, in a euclidean plane ϕ . These *n* lines, together with their n(n-1)/2 points of intersection, some or all of which may be coincident, form a configuration which we temporarily denote by *K*. Any one of the points in *K*, say the point of intersection of the lines a_i and a_j , may be regarded as a virtually non-present intersection of a_i and a_j . Such a point will be called a point of non-connection and will be denoted by Q_{ij} . The lines a_i and a_j are then said to be disconnected or to have virtually no intersection at Q_{ij} . Let *d* be the number of points of non-connection in *K*, where

(1)
$$0 \leq d \leq (n-1)(n-2)/2.$$

The condition expressed by (1) will be explained in §2. Any point of K, not regarded as a point of non-connection, will be called a point of connection and will be denoted by P_{ij} if it is the intersection of the lines a_i and a_j . If the d points of non-connection in K are taken in such a way that each of the n lines has one point of connection with at least one of the remaining lines, the resulting configuration is called a plane connected n-line with d points of non-connection and will henceforth be denoted by γ_d^n or just γ .

The object of this paper is to derive some of the enumerative properties of γ . What these properties are will be explained as we proceed. They will all be expressed in terms of n and d.

2. The maximum number of points of non-connection. If d=0, then all the n(n-1)/2 points in γ_0 are points of connection. We may call γ_0^n an absolutely connected *n*-line. Suppose d > 0. Obviously no n-1 of the *d* assumed points of non-connection can be on any one line, say a_1 . For, if n-1 of them did lie on a_1 , then a_1 would be disconnected from the remaining lines, and γ would not be a connected *n*-line. Let there be n-2 such points on a_1 . Then a_1 is connected with another line, say a_2 , by the point P_{12} . If a_2 is to be connected with a third line a_3 , then no more than n-3 of the remaining points of nonconnection can be on a_2 . Similarly, if a_3 is to be connected with a fourth line a_4 , then a_3 cannot have on it more than n-4 of the remaining d - (n-2) - (n-3) points of non-connection. Continuing this proc-