ENUMERATIVE PROPERTIES OF PLANE CONNECTED n-LINES

B. C. WONG

1. Introduction. Consider n distinct lines $a_{1}, a_{2}, \cdots, a_{n}$, no two of which are parallel, in a euclidean plane ϕ. These n lines, together with their $n(n-1) / 2$ points of intersection, some or all of which may be coincident, form a configuration which we temporarily denote by K. Any one of the points in K, say the point of intersection of the lines a_{i} and a_{i}, may be regarded as a virtually non-present intersection of a_{i} and a_{j}. Such a point will be called a point of non-connection and will be denoted by $Q_{i j}$. The lines a_{i} and a_{j} are then said to be disconnected or to have virtually no intersection at $Q_{i j}$. Let d be the number of points of non-connection in K, where

$$
\begin{equation*}
0 \leqq d \leqq(n-1)(n-2) / 2 \tag{1}
\end{equation*}
$$

The condition expressed by (1) will be explained in §2. Any point of K, not regarded as a point of non-connection, will be called a point of connection and will be denoted by $P_{i j}$ if it is the intersection of the lines a_{i} and a_{j}. If the d points of non-connection in K are taken in such a way that each of the n lines has one point of connection with at least one of the remaining lines, the resulting configuration is called a plane connected n-line with d points of non-connection and will henceforth be denoted by $\gamma_{d^{n}}$ or just γ.

The object of this paper is to derive some of the enumerative properties of γ. What these properties are will be explained as we proceed. They will all be expressed in terms of n and d.
2. The maximum number of points of non-connection. If $d=0$, then all the $n(n-1) / 2$ points in γ_{0} are points of connection. We may call $\gamma_{0}{ }^{n}$ an absolutely connected n-line. Suppose $d>0$. Obviously no $n-1$ of the d assumed points of non-connection can be on any one line, say a_{1}. For, if $n-1$ of them did lie on a_{1}, then a_{1} would be disconnected from the remaining lines, and γ would not be a connected n-line. Let there be $n-2$ such points on a_{1}. Then a_{1} is connected with another line, say a_{2}, by the point P_{12}. If a_{2} is to be connected with a third line a_{3}, then no more than $n-3$ of the remaining points of nonconnection can be on a_{2}. Similarly, if a_{3} is to be connected with a fourth line a_{4}, then a_{3} cannot have on it more than $n-4$ of the remaining $d-(n-2)-(n-3)$ points of non-connection. Continuing this proc-

