A SYMMETRIC REPRESENTATION OF THE TWENTYSEVEN LINES ON A CUBIC SURFACE BY LINES IN A FINITE GEOMETRY*

J. S. FRAME

1. Introduction. The group G_{51840} of the automorphisms of the twenty-seven lines and forty-five tritangent planes on a general cubic surface has an even subgroup G_{25920} which is simple. This may be represented on the one hand as the linear group $A(4,3)$, and on the other hand as the linear group $H O(4,4) . \dagger$ Each of these linear groups suggests a representation of the configuration of the lines on the cubic surface by lines in a finite geometry. Coble \ddagger has analysed the invariant configurations of the finite projective geometry $P G(3,3) \S$ under the group $A(4,3)$. In this paper we shall examine those configurations of the $P G(3,4)$ under the group $H O(4,4)$ which are isomorphic to the configurations of lines and planes on the general cubic surface.

The notation to be developed in this paper assigns coordinates in a symmetric manner to the twenty-seven lines and forty-five tritangent planes on the cubic surface and affords extremely simple conditions to determine their incidences. For this reason it has some advantages over the commonly used double-six notation devised by Schläfli.||
2. The planes. We assign to the planes of the $P G(3,4)$ a set of four homogeneous coordinates ($u_{0}, u_{1}, u_{2}, u_{3}$) which are marks of the field $F \equiv G F\left(2^{2}\right)$. The four marks of F, which we denote by $0,1, \omega, \bar{\omega}$, are roots of the congruence

$$
\begin{equation*}
u^{4} \equiv u(\bmod 2) \tag{1}
\end{equation*}
$$

[^0]
[^0]: * Presented to the Society, February 26, 1938.
 \dagger L. E. Dickson, Linear Groups, 1901, p. 309. J. S. Frame, The simple group of order 25920, Duke Mathematical Journal, vol. 2 (1936), p. 477.
 \ddagger A. B. Coble, A Configuration in Finite Geometry Isomorphic with That of the Twenty-seven Lines of a Cubic Surface, Johns Hopkins University Circulars, no. 208, 1908, pp. 80-88.
 § R. D. Carmichael discusses finite projective geometries in his Introduction to the Theory of Groups of Finite Order, 1937.
 $\|$ L. Schläfli, On the twenty-seven lines upon a surface of third order, Quarterly Journal of Mathematics, vol. 2 (1858), pp. 110-120. A. Henderson, The Twenty-seven Lines upon the Cubic Surface, 1911. For other notations, see H. S. M. Coxeter, Polytopes with regular-prismatic vertex figures, Philosophical Transactions of the Royal Society of London, vol. 229 (1930), pp. 396, 418.

