A NOTE ON NORMAL DIVISION ALGEBRAS OF PRIME DEGREE*

A. A. ALBERT

Wedderburn has proved \dagger that all normal division algebras of degree three over a non-modular field \Re are cyclic algebras. It is easily verified that his proof is actually correct for \Re of any characteristic not three, and I gave a modification of his proof \ddagger showing the result also valid for the remaining characteristic three case. Attempts to generalize Wedderburn's proof to algebras of prime degree p > 3 have thus far been futile, and it is not yet known whether there are any non-cyclic algebras of prime degree. One notes that in both Wedderburn's proof and my modification one starts by studying a non-cyclic cubic field and thus a subfield of a normal splitting field of degree six with a quadratic (cyclic) subfield. I have generalized this property to the case of arbitrary prime degree and have now provided a new proof of the Weddenburn theorem for algebras of degree three in the characteristic three case. The result is the special case p=3, m=2 of the following theorem:

THEOREM. Let \mathfrak{D} be a normal division algebra of degree p over a field \mathfrak{R} of characteristic p, and let m be prime to p. Then if \mathfrak{D} has a normal splitting field \mathfrak{W} of degree pm over \mathfrak{R} , with a cyclic subfield \mathfrak{L} of degree m over \mathfrak{R} , it follows that the algebra \mathfrak{D} is a cyclic algebra.

In our proof we shall use the following known theoremss on normal division algebras \mathfrak{D} of degree *n* over arbitrary fields \mathfrak{R} :

LEMMA 1. Let \mathfrak{L} have degree prime to n. Then $\mathfrak{D}_{\mathfrak{L}}$ is a division algebra.

LEMMA 2. Let \mathfrak{Z}_0 have degree *n* over \mathfrak{R} and split \mathfrak{D} . Then \mathfrak{Z}_0 is equivalent to a (maximal) subfield of \mathfrak{D} .

LEMMA 3. Let \mathfrak{D} have a cyclic subfield of degree n. Then \mathfrak{D} is a cyclic algebra.

^{*} Presented to the Society, April 8, 1938.

[†] Transactions of this Society, vol. 22 (1921), pp. 129-135.

[‡] Transactions of this Society, vol. 36 (1934), pp. 388-394.

[§] Cf. Deuring's *Algebren* for our notation and the proofs of the results of Lemmas 1, 2, 3. Lemma 4 was proved by the author for \Re of characteristic not p, Transactions of this Society, vol. 36 (1934), pp. 885–892, and for \Re of characteristic p, ibid., vol. 39 (1936), pp. 183–188.