$$
\begin{equation*}
\frac{\partial P_{i}}{\partial \sigma}=A_{i} \tag{14}
\end{equation*}
$$

This system, together with the initial conditions, is satisfied by $P_{i}=0,(i=1, \cdots, k)$. Hence, on account of the uniqueness of the solution of (14) with given initial values, we conclude that $P_{i} \equiv 0$, and the proof is complete.

New York University

## ON THE EXISTENCE OF LINEAR FUNCTIONALS

 D EFINED OVER LINEAR SPACES*BY R. P. AGNEW

1. Introduction. A function $q(x)$ with domain in a linear space $E$ and range in the set $R$ of real numbers is called a functional, and $q(x)$ is called linear, if

$$
\begin{equation*}
q(a x+b y)=a q(x)+b q(y), \quad x, y \varepsilon E ; a, b \varepsilon R \tag{1}
\end{equation*}
$$

We call a functional $r(x)$ an $r$-function (over $E$ ) if there exists a linear functional $f(x)$ with

$$
\begin{equation*}
f(x) \leqq r(x), \quad x \varepsilon E \tag{2}
\end{equation*}
$$

Using a notation of Banach $\dagger$ we call a functional $p(x)$ a $p$-function if

$$
\begin{array}{rlr}
p(t x) & =t p(x), & t \geqq 0, x \varepsilon E \\
p(x+y) & \leqq p(x)+p(y), & x, y \varepsilon E
\end{array}
$$

A fundamental theorem of Banach (loc. cit., p. 29) can be stated as follows:

Theorem (Banach). Each p-function is an r-function.
In some problems $\ddagger$ involving existence of linear functionals $f_{1}(x)$ having prescribed properties, there appears a functional $q(x)$ with the following significance: There exists a linear functional $f_{1}$ having the requisite properties if and only if there exists

[^0]
[^0]:    * Presented to the Society, September 8, 1937.
    $\dagger$ S. Banach, Théorie des Opérations Linéaires, Warsaw, 1932, p. 28.
    $\ddagger$ The author intends to discuss these problems at some future time.

