$$
\{[f(x+(D-1) \theta)-f(x-\theta D)] F(y)\}_{y=0}=\theta \frac{d f(x)}{d x}
$$

Blissard's remark, "An equation which has a representative quantity is not susceptible to any algebraic operation by which the indices would be affected," becomes

$$
(D f)^{2} \neq D^{2} f
$$

University of Washington

ON FOURTH ORDER SELF-ADJOINT
 DIFFERENCE SYSTEMS*

BY V. V. LATSHAW

A linear difference expression for which the differential transform is self-adjoint (anti-self-adjoint) we shall call self-adjoint (anti-self-adjoint). \dagger We choose two fourth order difference equations

$$
\begin{align*}
L^{+}(u) & \equiv p(x)[u(x+2)+u(x-2)] \\
& +\lambda[u(x+1)+u(x-1)]+R(x) u(x)=0 \tag{1}\\
L^{-}(u) & \equiv p(x)[u(x+2)-u(x-2)] \\
& +\lambda[u(x+1)-u(x-1)]=0
\end{align*}
$$

where $L^{+}(u)$ is self-adjoint and $L^{-}(u)$ anti-self-adjoint for the range ($x=a, a+1, \cdots, b-1 ; b-a \geqq 4) . R(x)$ and $p(x)$ are both real, $p(x)$ being a non-vanishing periodic function of period two; λ is a parameter.

Let the functions ($y_{1}, y_{2}, y_{3}, y_{4}$) constitute a fundamental set of solutions for either (1) or (2), and ($w_{1}, w_{2}, w_{3}, w_{4}$) the set adjoint to it. The two sets are related by the equations

[^0]
[^0]: * Presented to the Society, October 30, 1937.
 \dagger J. Kaucky, Sur les équations aux différences finies qui sont identiques à leurs adjointes, Publications of the Faculty of Sciences, University of Masaryk, No. 22 (1922). For a discussion of adjoint differential expressions of infinite order, see H. T. Davis, The Theory of Linear Operators, 1936, pp. 474-475.

