we have

$$
\lim _{k \rightarrow \infty} \delta_{i}^{(k)}=\prod_{j}^{(i)} d_{i, j} \prod_{j} D_{i, j}
$$

Now

$$
\left|\delta_{i}^{(k)}-\delta\right|=\delta\left|1-\frac{\prod_{j}^{(i)} D_{i, j}^{(k)}}{\prod_{j}^{(i)} D_{i, j}^{(k-1)}}\right|
$$

But the quantity on the right approaches zero, so that $\delta_{i}{ }^{(k)} \rightarrow \delta$ as $k \rightarrow \infty$. We thus have (1), and the theorem is proved.

Institute for Advanced Study

AN INVOLUTORIAL LINE TRANSFORMATION IN S_{4} BY C. R. WYLIE, JR.

1. Introduction. It is a well known fact that all planes which meet four general lines of S_{4}^{*} are met by a fifth line. The remarkable configuration determined by five such "associated lines" is discussed in a number of places in the literature. \dagger In the present paper an involutorial line transformation suggested by the figure of five associated lines is discussed, both as a line involution in S_{4}, and as a point involution on a certain $V_{6}{ }^{5}$ in S_{9}. In §§2-6 the involution is treated at some length by purely synthetic methods. The final section (§7) contains a brief analytic treatment, including the equations of the involution, and the equations of the invariant and singular elements. The involu-
[^0]
[^0]: * We shall use the conventional symbol S_{m} to indicate a linear space of dimension m. A variety of order r and of dimension m we shall designate by the symbol $V_{m}{ }^{r}$.
 \dagger Welchman, W. G., Plane congruences of the second order in space of four dimensions and fifth incidence theorems, Proceedings of the Cambridge Philosophical Society, vol. 28 (1931-1932), pp. 275-284.

 Baker, H. F., On a proof of the theorem of a double six of lines by projection from four dimensions, Proceedings of the Cambridge Philosophical Society, vol. 20 (1920-1921), pp. 133-144.

 Baker, H. F., Principles of Geometry, Cambridge University Press, 1925, vol. IV, Chapter V,

