FUNCTIONS OF COPRIME DIVISORS OF INTEGERS

BY E. T. BELL

1. Unique Decompositions. If a set U of distinct positive integers $1, u_{1}, u_{2}, \cdots$ is such that*

$$
\begin{equation*}
\left(u_{i}, u_{j}\right)=1, \quad i \neq j, \quad i, j=1,2, \cdots \tag{1}
\end{equation*}
$$

we call U a coprime set. If to U we adjoin all positive integral powers $u_{1}^{\alpha_{1}}, u_{2}{ }^{\alpha_{2}}, \cdots, \alpha_{1}>0, \alpha_{2}>0, \cdots$ of integers in U, we get the extended set $E(U)$. If m is in $E(U)$, we call m a U-integer.

Theorem 1. If $n>1$ is representable as a product of powers of integers >1 in U, the representation is unique (up to permutations of the factors), say

$$
\begin{equation*}
n=u_{1}^{c_{1}} \cdots u_{r}^{c_{r}}, \quad u_{i}>1, \quad c_{i}>0, \quad i=1, \cdots, r \tag{2}
\end{equation*}
$$

For, by the definition of U, the u_{i} in (2) are distinct, and by (1) a prime p such that $p \mid n$ is such that $p \mid u_{j}$ for precisely one j, $0<j \leqq r$. We call (2) the U-decomposition of n.

Obviously there exist U 's such that some $n>1$ are not U-decomposable. From the fundamental theorem of arithmetic we have the following theorem:

Theorem 2. If $P \equiv p_{1}, p_{2}, \cdots$ is the set of all positive primes, the only U such that every integer $n>1$ is U-decomposable is $U \equiv P$.

We shall consider also another type of unique decomposition, valid for all $n>1$, which has the distinguishing property of U-decomposition as in (2), namely, every $n>1$ is uniquely a product of powers of coprime integers >1.

If the integer $s>0$ is divisible by the square of no prime, we call s simple. Let $S \equiv 1, s_{1}, s_{2}, \cdots$ be the set of all distinct simple integers; S includes P and is not a coprime set. Without confusion we may denote by $E(S)$ the set obtained by adjoining to S all positive integral powers $s_{1}{ }^{\alpha_{1}}, s_{2}{ }^{\alpha_{2}}, \cdots, \alpha_{1}>0, \alpha_{2}>0, \cdots$, of simple integers.

Let $n=p_{1}{ }^{a_{1}} \cdots p_{r}{ }^{a_{r}}$ be the P-decomposition of n. If a_{1}, \cdots, a_{r} are all different, this is by definition also the S-decomposition. If

[^0]
[^0]: * In the customary notations, (m, n) is the G.C.D. of m, n, and $m \mid n$ signifies that m divides n arithmetically.

