[October,

PROOF OF THE NON-ISOMORPHISM OF TWO COLLINEATION GROUPS OF ORDER 5184*

BY F. A. LEWIS

Introduction. Let S denote the collineation

 $\rho x_r = \epsilon^{r-1} x'_r$, $(r = 1, \dots, n)$, $\epsilon = \cos(2\pi/n) + i \sin(2\pi/n)$, and T the collineation

$$\rho x_r = x'_{r+1}, \qquad (r = 1, \cdots, n), \qquad x'_{n+1} \equiv x'_1.$$

The abelian group $\{S, T\}$ of order n^2 is invariant under a group $\dagger C_n$ of order

$$n^{5}\left(1-\frac{1}{p_{1}^{2}}\right)\left(1-\frac{1}{p_{2}^{2}}\right)\cdots\left(1-\frac{1}{p_{m}^{2}}\right),$$

where p_1, p_2, \cdots, p_m are the distinct prime factors of n. The order of C_6 is 5184.

Winger[‡] has discussed briefly the monomial group of order $(r+1)!n^r$ that leaves invariant the variety

$$x_0^n + x_1^n + x_2^n + \cdots + x_r^n = 0.$$

This group is generated by the symmetric group of degree r+1and an abelian group of order n^r in canonical form. For r=3 and n=6 there results a group G of order 5184 which has been treated by Musselman.§ The purpose of this note is to prove that G and C_6 are not simply isomorphic. The proof consists in showing that the number of collineations of period 2 in G exceeds the number of collineations of period 2 in C_6 .

^{*} Presented to the Society, June 18, 1936.

[†] In fact, C_n is the largest collineation group in *n* variables containing $\{S, T\}$ invariantly, the coefficients and variables being in the field of complex numbers. (Author's dissertation, Ohio State University, 1934.)

[‡] Trinomial curves and monomial groups, American Journal of Mathematics, vol. 52 (1930), p. 394.

[§] On an imprimitive group of order 5184, American Journal of Mathematics, vol. 49 (1927).