the pairs of distinct points $b_{0}, b_{1} ; c, b_{0} ; b_{1}, c$ in turn. We obtain the result that $a b_{0} b_{1}$ or $b_{1} b_{0} b$ and $a c b_{0}$ or $b_{0} c b$ and $a b_{1} c$ or $c b_{1} b$ exist. But it is readily verified that no one of the eight possible combinations can exist, for assuming any one of them leads, by an application of the transitive property of the betweenness relation in metric spaces, to the conclusion that the triple b_{0}, c, b_{1} is linear, in violation of the relations (1) above.* This completes the proof of the theorem.

University of Missouri

A TRANSFORMATION ASSOCIATED WITH THE TRISECANTS OF A RATIONAL TWISTED QUINTIC CURVE \dagger

BY L. A. DYE

1. Introduction. This transformation is generated by the use of a $(1,1)$ correspondence between a pencil of ruled cubic surfaces $|F|$, and their simple directrices which are the trisecants of a rational twisted quintic curve C_{5}. All of the cubic surfaces contain C_{5} and have the quadrisecant of C_{5} as a double line l. Through a general point P of space passes one F whose simple directrix r determines with P a plane tangent to the ruled surface of trisecants of C_{5} at a point Q on r. The line $P Q$ meets F in a residual point P^{\prime} which is the image of P in an involutorial Cremona transformation of order 43. A special feature of the transformation is the existence of two ruled surfaces whose generators are parasitic lines of the transformation. One of these surfaces is a principal surface, and the other is not.

Other transformations generated by a somewhat similar method have been discussed by the author in recent papers. \ddagger
2. The Pencil of Cubic Surfaces. The equation of a pencil of cubic surfaces, parameter λ, with a double line $l \equiv x_{1}=x_{2}=0$, is

[^0]
[^0]: * Erste Untersuchung, loc. cit., p. 78. For example, the combination $a b_{0} b_{1}$, $a c b_{0}, a b_{1} c$ cannot exist since the second and third of these relations imply the existence of $b_{1} c b_{0}$.
 \dagger Presented to the Society, December 29, 1936.
 \ddagger This Bulletin, vol. 42 (1936), pp. 535-540. Tôhoku Mathematical Journal, vol. 43, (1937), pp. 174-177.

