the integrals taken so that the boundary C is traversed in the positive sense. Series (15) converges uniformly for x in every closed region in \mathcal{L}, and is therefore valid for all x in \mathcal{L}.

From this we obtain the following result.
Theorem 2.* The series

$$
\begin{equation*}
y(x)=\sum_{n=0}^{\infty} f_{n} \frac{x^{n}}{n!} \tag{17}
\end{equation*}
$$

converges in a circle of radius exceeding 1/2, and in some neighborhood of $x=-1 / 2$ the function $y(x)$ is a solution of the equation

$$
\begin{equation*}
\Delta y(x)=F(x) \tag{1}
\end{equation*}
$$

Pennsylvania State College

ON THE SUMMABILITY BY POSITIVE TYPICAL MEANS OF SEQUENCES $\{f(n \theta)\} \dagger$

BY M. S. ROBERTSON

1. Introduction. In a recent paper \ddagger the author required an inequality for the expression

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}|\sin k \theta| \leqq \frac{1}{\pi} \int_{0}^{\pi}|\sin \theta| d \theta=\frac{2}{\pi} \tag{1}
\end{equation*}
$$

which apparently is due to T. Gronwall.§ This inequality suggests immediately the question: For what functions $f(\theta)$, defined in the interval $(-\pi, \pi)$, are we permitted to write

$$
\begin{equation*}
F(\theta ; f) \equiv \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f(k \theta) \leqq \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) d \theta ? \tag{2}
\end{equation*}
$$

More generally, we may ask: For what functions $f(\theta)$ and sequences $\left\{a_{n}\right\}$ of positive numbers is the following true:

[^0]
[^0]: * See Transactions of this Society, loc. cit., p. 359.
 \dagger Presented to the Society, April 11, 1936.
 \ddagger See M. S. Robertson, On the coefficients of a typically-real function, this Bulletin, vol. 41 (1935), p. 569.
 § See Transactions of this Society, vol. 13 (1912), pp. 445-468.

