DISTANCE FUNCTIONS AND THE METRIZATION PROBLEM*

BY A. H. FRINK

- 1. Introduction. The metrization problem \dagger is concerned with conditions under which a topological space is metrizable, that is, is homeomorphic to a metric space. A space is metric if to every two points a and b, a non-negative real number ab is assigned satisfying the well known conditions:
 - I. ab = 0 if and only if a = b;
 - II. ab = ba, (symmetry);
 - III. $ac \leq ab + bc$, (triangle property).

A metrization theorem is usually proved by actually introducing such a distance function into the space. However, it is often easier to introduce first into a topological space a distance function satisfying the following conditions IV or V instead of III:

- IV. If $ab < \epsilon$ and $cb < \epsilon$, then $ac < 2\epsilon$ (generalized triangle property);
- V. For every $\epsilon > 0$ there exists $\phi(\epsilon) > 0$ such that if $ab < \phi(\epsilon)$ and $cb < \phi(\epsilon)$, then $ac < \epsilon$ (uniformly regular).

Condition V reduces to IV if $\phi(\epsilon) = \epsilon/2$. Chittenden‡ has shown that a space with a distance function satisfying I, II, and V is metrizable. Chittenden's proof is somewhat long and complicated. Furthermore, while the existence of a distance function satisfying III is proved, it is not defined directly in terms of the original distance function satisfying V. Alexandroff and Urysohn§ make use of Chittenden's theorem introducing a metric satisfying IV. Niemytski $\|$ and W. A. Wilson¶ make use of Alexandroff and Urysohn's result.

Without relying on Chittenden's theorem, the present paper gives a simple, direct proof that a topological space with a distance function satisfying I, II, IV is metrizable. The method

^{*} Presented to the Society, September 1, 1936.

[†] See Chittenden, this Bulletin, vol. 33 (1927), pp. 13-34.

[‡] Transactions of this Society, vol. 18 (1917), p. 161.

[§] Comptes Rendus, vol. 177 (1923), p. 1274.

[|] Transactions of this Society, vol. 29 (1927), p. 507.

[¶] American Journal of Mathematics, vol. 53 (1931), p. 361.