ON CERTAIN ARITHMETIC FUNCTIONS OF SEVERAL ARGUMENTS*

BY LEONARD CARLITZ

1. Introduction. Series of the type

$$
\begin{equation*}
\sum_{l, m, n} \beta(l, m, n) \tag{1}
\end{equation*}
$$

summed over all positive l, m, n satisfying the conditions

$$
\begin{equation*}
(m, n)=(n, l)=(l, m)=1 \tag{2}
\end{equation*}
$$

occur in a problem in additive arithmetic. The series (1) is transformed into a series $\sum \gamma(l, m, n)$, now summed over all positive l, m, n, where

$$
\gamma(l, m, n)=\sum_{e, f, \rho=1}^{\infty} \mu(e, f, g) \beta(e l, f m, g n)
$$

The function $\mu(e, f, g)$ may be defined by

$$
\sum \mu(e, f, g)= \begin{cases}1 & \text { for }(m, n)=(n, l)=(l, m)=1 \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

the summation on the left extending over all $e|l, f| m, g \mid n$.
In this note we define a class of functions μ satisfying relations of the type (3); the functions generalize, in several directions, the ordinary Möbius μ-functions. We next define and evaluate a class of generalized ϕ-functions; they may be expressed in terms of μ.
2. The μ-Functions. For arbitrary positive k, s we define the function $\mu^{s}\left(m_{1}, \cdots, m_{k}\right)$ by means of

$$
\sum_{e i \mid m_{i}} \mu^{s}\left(e_{1}, \cdots, e_{k}\right)= \begin{cases}1 & \text { for } M^{s} \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

the k-fold summation on the left extending over all $e_{i} \mid m_{i}$, ($i=1, \cdots, k$), while M^{s} is an abbreviation for the $C_{k, s}$ simultaneous conditions

[^0]
[^0]: * Presented to the Society, February 29, 1936.

