DIVISORS OF SECOND-ORDER SEQUENCES*

BY MARSHALL HALL

1. Introduction. Given a recurrence of second order

$$
\begin{equation*}
u_{n+2}=a u_{n+1}-b u_{n} \tag{1}
\end{equation*}
$$

where a and b are integers, and the initial values u_{0}, u_{1} (integers) are terms of a sequence $\left(u_{n}\right)$ satisfying (1), it is an interesting problem to determine whether or not a given prime p will divide some u_{n} of the sequence. Morgan Ward \dagger reduced this problem to the standard problem on recurrences of determining the restricted periods modulo p of (1) and an auxiliary recurrence of second order. His method is somewhat indirect and uses the assumption that μ, the restricted period of (1) modulo p, is even. This paper obtains a similar reduction of the problem by a somewhat more direct method and makes no assumption on μ.
2. Some Exceptional Cases. The appearance of p as a divisor of some u_{n} evidently depends solely upon the values of a, b, u_{0}, u_{1}, modulo p. If p stands in certain relations to these numbers, the theory of the sequence $\left(u_{n}\right)$ modulo p is different from the general theory. It is convenient to treat these unusual cases separately, and then exclude them from further consideration.

Case 1. $\quad p|a, p| b$.
Here $p \mid u_{n}$ for $n \geqq 2$.
Case 2. $\quad p \nmid a, p \mid b$.
Here $u_{n} \equiv a^{n-1} u_{1}(\bmod p)$ for all $n \geqq 2$. Hence either p divides all u_{n} for $n \geqq 1$ or none.

Case 3. $p \mid a, p \nmid b$.
Here $u_{2 n} \equiv(-b)^{n} u_{0}, u_{2 n+1} \equiv(-b)^{n} u_{1}(p)$; and p divides all or none of $u_{2 n}$, and all or none of $u_{2 n+1}$.

Case 4. $\quad p \nmid a, p \nmid b, p$ divides either u_{0} or u_{1}.
Then p divides either $u_{n \mu}$ or $u_{n \mu+1}$, where μ is the restricted period of (u_{n}) modulo p.

Case 5. $\quad p \mid\left(a^{2}-4 b\right), p \nmid a, b, u_{0}, u_{1}$.
Then p cannot be 2 since $p \nmid a$. Let $a \equiv 2 a^{\prime}(\bmod p)$, then

[^0]
[^0]: * Presented to the Society, April 20, 1935.
 \dagger M. Ward, An arithmetical property of recurring series of the second order, this Bulletin, vol. 40 (1934), p. 825.

