SIMILARITY OF MATRICES IN WHICH THE ELEMENTS ARE REAL QUATERNIONS*

BY LOUISE A. WOLF

1. Introduction. The purpose of this paper is to give a necessary and sufficient condition that for two matrices, A and B, of which the elements are real quaternions, there exist a nonsingular matrix S whose elements are real quaternions such that $S A S^{-1}=B$. The matrices A and B are said to be similar if such a matrix S exists. This paper defines a set of invariant factors for any such matrix, A, in terms of the ranks of certain real polynomials in A.
2. Definitions and Notations. If A represents a matrix having m rows and n columns, then A^{\prime} (read A transpose) is the matrix A with the rows and columns interchanged so that A^{\prime} has n rows and m columns.

According to E. H. Moore a set of k vectors η_{i}, each being a matrix having n rows and one column, where $\eta_{i}^{\prime}=\left(y_{i 1}, y_{i 2}, \cdots\right.$, $\left.y_{i n}\right),(i=1,2, \cdots, k)$, whose elements $y_{i j}$ are real quaternions, is left linearly dependent with respect to real quaternions if there exists a set of constants q_{i}, which are real quaternions and not all zero such that $\sum_{i=1}^{i=k} q_{i} y_{i j}=0,(j=1,2, \cdots, n)$. If no such set of real quaternions, q_{i}, exists except $q_{i} \equiv 0$, the vectors η_{i} are said to be left linearly independent. Similarly the k vectors η_{i} are right linearly dependent with respect to real quaternions if there exists a set of constants, q_{i}, which are real quaternions and not all zero, such that $\sum_{i=1}^{i=k} y_{i i} q_{i}=0,(j=1,2, \cdots, n)$. If no such set of real quaternions, q_{i}, exists except $q_{i} \equiv 0$, the vectors η_{i} are said to be right linearly independent.

Moore considered the columns of a matrix, whose elements are real quaternions, as vectors and defined the rank, r, of such a matrix, S, as the maximum number of columns of S which are right linearly independent with respect to real quaternions. He proved that if a matrix S is of $\operatorname{rank} r$, then r is also the maximum number of rows of S that are left linearly independent with

[^0]
[^0]: * Presented to the Society, September 13, 1935.

