## THE FORM $w x+x y+y z+z u$

## BY E. T. BELL

1. Introduction. In the usual notation,

$$
N \equiv N[n=w x+x y+y z+z u ; \quad w, x, z, u>0 ; \quad y \geqq 0]
$$

denotes the number of sets ( $w, x, y, z, u$ ) of integers, subject to the conditions indicated, satisfying the stated equation in which $n$ is an arbitrary constant integer $>0$. Let $\zeta_{r}(n)$ denote the sum of the $r$ th powers of all the divisors of $n$, so that $\zeta_{0}(n)$ is the number of divisors. Then

$$
\begin{equation*}
N=\zeta_{2}(n)-n \zeta_{0}(n) \tag{1}
\end{equation*}
$$

This curious result is the only one of the numerous theorems on quadratic forms stated by Liouville for which (apparently) no proof has been published.*

We shall first show that (1) follows from

$$
\begin{equation*}
2 N^{\prime}=\zeta_{2}(n)-2 n \zeta_{0}(n)+\zeta_{1}(n) \tag{2}
\end{equation*}
$$

$N^{\prime} \equiv N^{\prime}[n=w x+x y+y z+z u+u x ; \quad w, x, y, z>0 ; \quad u \geqq 0]$, and then prove (2). Another similar result is stated in $\S 5$.
2. Equivalence of (1) and (2). The form in $N^{\prime}$ may be written

$$
y z+(z+x) u+x(w+y)
$$

and hence, by the conditions on the variables, $w+y \equiv y^{\prime}>y$. Thus (2) is equivalent to

$$
\begin{align*}
& \zeta_{2}(n)-2 n \zeta_{0}(n)+\zeta_{1}(n) \\
& \quad=2 N^{\prime}[n=y z+(z+x) u+x w ; x, y, z, w>0 ; u \geqq 0 ; w>y] \tag{3}
\end{align*}
$$

Applying the substitution $(x z)(y w)$ to the last we see that (3) holds also when the condition $w>y$ is replaced by $w<y$.

Consider now the remaining possibility, $w=y$. The equation becomes

[^0]
[^0]:    * J. Liouville, Comptes Rendus, Paris, vol. 62 (1866), p. 714; also, Journal de Mathématiques, (2), vol. 12 (1867), pp. 47-48. Noted in Dickson's History, vol. 3, p. 237. Liouville points out why the theorem is unusual.

