ASSOCIATED ALGEBRAIC AND PARTIAL DIFFERENTIAL EQUATIONS

BY J. A. GREENWOOD

1. Introduction. Between an algebraic equation and an ordinary linear homogeneous differential equation with constant coefficients, in a single unknown, there is a familiar and useful association, illustrated by the equations

$$
x^{2}+3 x-4=0, \quad u^{\prime \prime}+3 u^{\prime}-4 u=0
$$

Riquier* has shown that a similar association exists between finite systems consisting of m algebraic equations in n unknowns and m linear homogeneous partial differential equations in a single unknown and n independent variables as follows. Let

$$
\begin{equation*}
\sum_{0}^{p} a_{i_{1} \cdots i_{n}}^{\alpha}\left(i_{1} \cdots i_{n}\right)=0, \quad(\alpha=1, \cdots, m) \tag{1}
\end{equation*}
$$

be any system of algebraic equations, where the a 's are constants and ($i_{1} \cdots i_{n}$) is to be interpreted as the monomial $x_{1}{ }^{i_{1}} \cdots x_{n}{ }^{{ }^{n}}$. Let the associated system of partial differential equations be

$$
\begin{equation*}
\sum_{0}^{p} a_{i_{1} \cdots i_{n}}^{\alpha}\left(i_{1} \cdots i_{n}\right) u=0, \quad(\alpha=1, \cdots, m) \tag{2}
\end{equation*}
$$

where $\left(i_{1} \cdots i_{n}\right)$ is to be interpreted as the differential operator $\partial^{i_{1}+\cdots+i_{n}} / \partial x_{1}{ }^{i_{1}} \cdots \partial x_{n}{ }^{{ }^{n}}$.

We shall prove in this paper the two following theorems.
Theorem 1. System (1) is inconsistent if and only if the general solution of (2) is $u=0$.

Theorem 2. The general solution of (2) is a non-zero polynomial if and only if $x_{1}=\cdots=x_{n}=0$ is the solution of (1).
2. Corresponding Operations on the Two Systems. We shall mul-

[^0]
[^0]: * Sur la résolution numérique du système d'équations algébriques entières à un nombre quelconque d'inconnues, Annales Scientifiques de l'École Normale Supérieure, vol. 63 (1928), pp. 145-188.

