ON THE INVARIANT CHARACTER OF A SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS* BY GORDON FULLER

1. Equations Set $U p$. We shall consider a differential equation

$$
\begin{equation*}
\operatorname{div} F=|F| \tag{1}
\end{equation*}
$$

where F is a vector and $|F|$ denotes its length. Its real character is seen better if we write u, v, w for the components of F and ρ for $|F|$; we have then the differential equation

$$
\begin{equation*}
u_{x}+v_{y}+w_{z}=\rho \tag{2}
\end{equation*}
$$

(subscripts throughout this discussion mean differentiation) with the condition

$$
\begin{equation*}
u^{2}+v^{2}+w^{2}=\rho^{2} \tag{3}
\end{equation*}
$$

which shows that the relation imposed on F is quadratic.
2. Auxiliary Quantities. In an attempt to reduce the system to linear equations we introduce auxiliary quantities $\alpha, \beta, \gamma, \delta$ (also functions of x, y, z), in terms of which we have

$$
\begin{align*}
u=2(\alpha \delta+\beta \gamma), & w=\alpha^{2}+\beta^{2}-\gamma^{2}-\delta^{2} \\
v=2(\alpha \gamma-\beta \delta), & \rho=\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2} \tag{4}
\end{align*}
$$

Condition (3) is satisfied identically by a substitution of these expressions into it, and it remains to determine the conditions imposed upon $\alpha, \beta, \gamma, \delta$ by (2). Substitution gives

$$
\begin{align*}
& \alpha\left(\delta_{x}+\gamma_{y}+\alpha_{z}-\frac{\alpha}{2}\right)+\beta\left(\gamma_{x}-\delta_{y}+\beta_{z}-\frac{\beta}{2}\right) \tag{5}\\
& +\gamma\left(\beta_{x}+\alpha_{y}-\gamma_{z}-\frac{\gamma}{2}\right)+\delta\left(\alpha_{x}-\beta_{y}-\delta_{z}-\frac{\delta}{2}\right)=0
\end{align*}
$$

[^0]
[^0]: * This paper was presented to the Society, April 8, 1932. It gives in an abbreviated form the material covered in the first part of a University of Michigan dissertation to be available in lithoprinted copies.

