ON CONTINUED FRACTIONS OF THE FORM

$$
1+\overleftarrow{K}_{1}^{\infty}\left(b_{\nu} z / 1\right)
$$

BY H. S. WALL

1. Introduction. The principal object of this paper is to determine the region of convergence of the infinite continued fraction
when $b_{1}, b_{2}, b_{3}, \cdots$ are real or complex numbers such that for some $k \geqq 1$

$$
\begin{equation*}
\lim _{n=\infty} b_{n k+m}=\sigma_{m}, \quad(m=1,2,3, \cdots, k) \tag{2}
\end{equation*}
$$

The results may be stated in terms of the numerators and denominators $u_{n, \lambda}, v_{n, \lambda}$ of the nth convergent of the continued fraction $1+K_{\nu=1}^{\infty}\left(\sigma_{\nu+\lambda} z / 1\right),\left(\sigma_{n k+m}=\sigma_{m}\right)$, as follows.

Theorem 1. Let \dagger us write $G_{k}=v_{k-1,1} v_{k-1,2} \cdots v_{k-1, k}$ and $H_{k}=v_{k}+u_{k-1}-v_{k-1}$; and let us set

$$
Z(z)=-(-z)^{k} \sigma_{1} \sigma_{2} \cdots \sigma_{k} / H_{k}^{2}
$$

Let R be an arbitrary bounded closed and connected region of the z plane containing the origin on the interior and which contains (within or upon the boundary) none of the zeros of the polynomials G_{k}, H_{k}, nor points z such that $Z(z)$ is a real number $\leqq-1 / 4$. Then
(1) converges over R except at certain isolated points p_{1}, p_{2}, \cdots, p_{μ}, and uniformly over the region obtained from R by removing the interiors of small circles with centers $p_{1}, p_{2}, \cdots, p_{\mu}$. The limit is a non-rational function of z analytic over R except at p_{1}, p_{2}, \cdots, p_{μ}, which are poles.

The function $Z(z)$ determines a transformation of the z plane into the Z plane and $Z=Z(z)$. Except in the case $\sigma_{1} \sigma_{2} \cdots \sigma_{k}$ $=0$, the set of points in the z plane such that Z is real and

[^0]
[^0]: \dagger We write $u_{n, 0}=u_{n}$, and $v_{n, 0}=v_{n}$.

