A NOTE ON THE EQUILIBRIUM POINT OF THE GREEN'S FUNCTION FOR AN ANNULUS

DEBORAH M. HICKEY

1. Introduction. In a previous paper* the motion of the equilibrium point of the Green's function for a plane annular region was studied as the pole was shifted along a radius in the neighborhood of the geometric mean circle $C_{0 .} . \dagger$ The expression for $d r / d r_{0}$ on C_{0}, r being the distance of the equilibrium point from the center of the circles, r_{0} that of the pole, is $-F_{r_{0}} / F_{r}$, where

$$
\begin{aligned}
F_{r_{0}} & =\frac{\partial F}{\partial r_{0}}=-\frac{2}{R}\left[\frac{1}{2 \log R}-\frac{1}{8}+\sum_{m=1}^{\infty} \frac{(-1)^{m} m}{R^{m}-1}\right] \\
F_{r} & =\frac{\partial F}{\partial r}=-\frac{2}{R}\left[\frac{1}{8}+\sum_{m=1}^{\infty} \frac{(-1)^{m} m}{R^{m}+1}\right]
\end{aligned}
$$

In these formulas 1 and R are the radii of the inner and outer circular boundaries of the region. It was shown by an application of a theorem of Schlömilch \ddagger that $F_{r_{0}}$ does not vanish on C_{0}.

In this article this result and others are obtained by a method which seems better adapted to the problem.§

It is noticed that the function

$$
f(z)=\frac{\pi}{\sin \pi z} \frac{z}{e^{a z}-1}, \quad a=\log R
$$

[^0]
[^0]: * D. M. Hickey, The equilibrium point of Green's function for an annular region, Annals of Mathematics, vol. 30 (1929), pp. 373-383.
 \dagger The Green's function for this region may be written in the form

 $$
 \begin{aligned}
 g\left(M, M_{0}\right) & =\log \frac{1}{M M_{0}}+\frac{1}{\log R}\left[\log R \log r_{0}-\log r \log r_{0} / R\right] \\
 & -\sum_{m=1}^{\infty} \frac{1}{m} \frac{\cos m\left(\theta-\theta_{0}\right)}{R^{2 m}-1}\left\{r^{m}\left[r_{0}^{m}-r_{0}^{-m}\right]+r^{-m}\left[\left(\frac{R^{2}}{r_{0}}\right)^{m}-r_{0}^{m}\right]\right\}
 \end{aligned}
 $$

 We take $F\left(r, r_{0}\right)=\partial g / \partial r$ for $r=r_{0}=R^{1 / 2}$ and $\theta-\theta_{0}=\pi$.
 \ddagger Über einige unendliche Reihen, Zeitschrift für Mathematik und Physik, vol. 23 (1878), p. 132.
 § The suggestion that the method of contour integration and the theory of residues might prove useful was given by A. J. Maria.

