A NOTE ON THE EQUILIBRIUM POINT OF THE GREEN'S FUNCTION FOR AN ANNULUS

DEBORAH M. HICKEY

1. Introduction. In a previous paper* the motion of the equilibrium point of the Green's function for a plane annular region was studied as the pole was shifted along a radius in the neighborhood of the geometric mean circle C_0 .† The expression for dr/dr_0 on C_0 , r being the distance of the equilibrium point from the center of the circles, r_0 that of the pole, is $-F_{r_0}/F_r$, where

$$F_{r_0} = \frac{\partial F}{\partial r_0} = -\frac{2}{R} \left[\frac{1}{2 \log R} - \frac{1}{8} + \sum_{m=1}^{\infty} \frac{(-1)^m m}{R^m - 1} \right],$$

$$F_r = \frac{\partial F}{\partial r} = -\frac{2}{R} \left[\frac{1}{8} + \sum_{m=1}^{\infty} \frac{(-1)^m m}{R^m + 1} \right].$$

In these formulas 1 and R are the radii of the inner and outer circular boundaries of the region. It was shown by an application of a theorem of Schlömilch‡ that F_{r_0} does not vanish on C_0 .

In this article this result and others are obtained by a method which seems better adapted to the problem.§

It is noticed that the function

$$f(z) = \frac{\pi}{\sin \pi z} \frac{z}{e^{az} - 1}, \qquad a = \log R,$$

† The Green's function for this region may be written in the form

$$g(M, M_0) = \log \frac{1}{MM_0} + \frac{1}{\log R} \left[\log R \log r_0 - \log r \log r_0 / R \right]$$

$$- \sum_{m=1}^{\infty} \frac{1}{m} \frac{\cos m(\theta - \theta_0)}{R^{2m} - 1} \left\{ r^m \left[r_0^m - r_0^{-m} \right] + r^{-m} \left[\left(\frac{R^2}{r_0} \right)^m - r_0^m \right] \right\}.$$

We take $F(r, r_0) = \partial g/\partial r$ for $r = r_0 = R^{1/2}$ and $\theta - \theta_0 = \pi$.

‡ Über einige unendliche Reihen, Zeitschrift für Mathematik und Physik, vol. 23 (1878), p. 132.

§ The suggestion that the method of contour integration and the theory of residues might prove useful was given by A. J. Maria.

^{*} D. M. Hickey, The equilibrium point of Green's function for an annular region, Annals of Mathematics, vol. 30 (1929), pp. 373-383.