A NEW SOLUTION OF THE GAUSS PROBLEM
 ON $h\left(s^{2} d\right) / h(d)^{*}$

BY GORDON PALL
The following demonstration of the well known formula

$$
\begin{equation*}
h\left(p^{2} d^{\prime}\right)=\sigma^{-1}\left\{p-\left(d^{\prime} \mid p\right)\right\} h\left(d^{\prime}\right) \tag{1}
\end{equation*}
$$

may be worth noting. Here $h(\Delta)$ denotes the number of classes of primitive integral binary quadratic forms of non-zero discriminant $\Delta ; p$ is any prime $\geqq 2 ; \sigma=1$ if $d^{\prime}<-4$ or d^{\prime} is a square, $\sigma=2$ if $d^{\prime}=-4, \sigma=3$ if $d^{\prime}=-3$; and if d^{\prime} is positive but not square, σ is the least positive integer for which $p \mid u_{\sigma},\left(t_{k}, u_{k}\right)$ denoting the successive positive integral solutions of $t^{2}-d^{\prime} u^{2}=4$.

Let $r(n)$ denote the number of sets of representations of n by a representative system of primitive forms of discriminant $d=p^{2} d^{\prime}$. If q is a prime such that $(d \mid q)=1$,

$$
\begin{equation*}
r\left(p^{2} q\right)=2\left\{p-\left(d^{\prime} \mid p\right)\right\} \tag{2}
\end{equation*}
$$

For by II (5), (33), (23)-(24), \dagger

$$
r\left(p^{2} q\right)=r\left(p^{2}\right) r(q)=2 r\left(p^{2}\right)=2\left\{1+r^{\prime}\left(p^{2}\right)\right\}
$$

where $r^{\prime}\left(p^{2}\right)$ equals the number $p-1-\left(d^{\prime} \mid p\right)$ of solutions w of

$$
(p w)^{2} \equiv p^{2} d^{\prime}\left(\bmod 4 p^{2}\right), \quad \frac{w^{2}-d^{\prime}}{4} \text { prime to } p, \quad\left(0 \leqq p w<2 p^{2}\right)
$$

By Theorem 4 of I, extended to $d>0$ in II, there is associated with each class (connoted by K, say) of primitive forms f of discriminant $p^{2} d^{\prime}$, a unique ambiguous class C, or two nonambiguous classes C and C^{-1}, of primitive forms g of discriminant $d^{\prime} ; C$ is characterized as representing any prime represented by K. By II (13), such forms satisfy, for all integers n,

$$
\begin{equation*}
f\left(p^{2} n\right)=\sigma g(n) \tag{3}
\end{equation*}
$$

[^0]
[^0]: * Presented to the Society, April 6, 1935.
 \dagger References are to the writer's two papers: I, Mathematische Zeitschrift, vol. 36 (1933), pp. 321-343; and II, Transactions of this Society, vol. 35 (1933), pp. 491-509.

