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This note gives a variation of a theorem of Sierpinski and
Saks.t The theorem is valid in spaces which have the Borel-
Lebesgue property (Axiom I of Saks}) and which satisfy axioms
(A), (B), (C), and (6) as given by Hausdorff.§ We use the term
connected for a closed set to mean that the set cannot be ex-
pressed as the sum of two mutually exclusive non-vacuous,
closed sets.||

THEOREM. Let F be a collection of closed sets at least one of
which is compact. Let F contain more than one element and let it
be true that the sets of each finite sub-collection of F have a non-
vacuous, connected set in common when this sub-collection contains
at least two elements of F. Under these hypotheses, there is a closed,
non-vacuous, connected set common to all of the sets of collection F.

Proor. Let F, be a compact member of collection F and let K
be the set of points common to all of the sets of collection F.

* Presented to the Society, December 1, 1934.

t See Saks, Fundamenta Mathematicae, vol. 2 (1921), pp. 1-3.

1 Saks, ibid., p. 2.

§ Mengenlehre, 1927, pp. 228-229.

|| The notion of limit point may be defined and this definition used to de-
scribe connectedness. We use domain and open set interchangeably.



