IRREDUCIBILITY OF POLYNOMIALS OF DEGREE n WHICH ASSUME THE SAME VALUE n TIMES*

BY LOUIS WEISNER

1. Introduction. A polynomial $F(x)$ of degree n, with integral coefficients, which assumes the same value k for n distinct integral values of x has the form

$$
F(x)=a_{0}\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)+k, \quad\left(a_{0} \neq 0\right)
$$

where the a 's denote integers, and $a_{1}, a_{2}, \cdots, a_{n}$ are distinct. The irreducibility of polynomials of this type in the field of rational numbers has been discussed by several writers for the particular cases $\dagger|k|=1,|k|=$ prime.

The present paper is concerned with the irreducibility of $F(x)$ for the case in which k is any integer $\neq 0$. It is obvious that even when the a 's are fixed, an infinitude of choices of k exists for which $F(x)$ is reducible. What is not obvious is that when k and n are fixed, only a finite number of non-equivalent reducible polynomials of the form $F(x)$ exist. Two polynomials $F(x)$ and $G(x)$, with integral coefficients, are regarded as equivalent if an integer h exists such that $F(x)= \pm G(\pm x+h)$. Moreover, if only k is fixed, but n is sufficiently large, every polynomial of the form of $F(x)$ is irreducible.
2. Isolation of the Roots of $f(x)$. The polynomial $F(x)$ of $\S 1$ is evidently equivalent to the polynomial

$$
f(x)=a x\left(x-t_{1}\right) \cdots\left(x-t_{n-1}\right) \pm k,
$$

where $a, k, t_{1}, \cdots, t_{n-1}$ are positive integers, and the t 's are distinct. We shall confine our attention to $f(x)$ and assume that $n \geqq 2$. We shall denote by x_{0} a root of $f(x)$ whose absolute value is a minimum, and the other roots by x_{1}, \cdots, x_{n-1}. Taking the ratio of the coefficient of x to the constant term in each of the last two members of

[^0]
[^0]: * Presented to the Society, September 5, 1934.
 \dagger For literature, see Dorwart and Ore, Annals of Mathematics, vol. 34 (1933), p. 81; A. Brauer, Jahresbericht der Deutscher Mathematiker Vereinigung, vol. 43 (1933), p. 124.

